BackgroundPorcine epidemic diarrhea caused by porcine epidemic diarrhea virus (PEDV) has led to serious economic losses to the swine industry worldwide. In this study, an oral recombinant Lactobacillus casei vaccine against PEDV infection targeting the intestinal microfold (M) cells and dendritic cells (DCs) for delivering the core neutralizing epitope (COE) of PEDV spike protein was developed with M cell-targeting peptide (Col) and dendritic cell-targeting peptide (DCpep). The immunogenicity of the orally administered recombinant strains was evaluated.ResultsAfter immunization, significantly higher levels of anti-PEDV specific IgG antibodies with PEDV neutralizing activity in the sera and mucosal sIgA antibodies in the tractus genitalis, intestinal mucus, and stools were detected in mice orally administered with the recombinant strain pPG-COE-Col-DCpep/L393, which expressed DCpep and Col targeting ligands fused with the PEDV COE antigen, compared to mice orally immunized with the recombinant strain pPG-COE/L393 without the DCpep and Col targeting ligands. Moreover, in response to restimulation with the PEDV COE antigen in vitro, a significant difference in splenocyte proliferation response and Th2-associated cytokine IL-4 level was observed in the group of mice orally immunized with pPG-COE-Col-DCpep/L393 (p < 0.05) compared to the groups of mice that received pPG-COE-Col/L393 and pPG-COE-DCpep/L393, respectively.ConclusionsThe intestinal M cells- and DCs-targeting oral delivery of genetically engineered Lactobacillus expressing the COE antigen of PEDV can efficiently induce anti-PEDV mucosal, humoral, and cellular immune responses via oral administration, suggesting a promising vaccine strategy against PEDV infection.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-0861-7) contains supplementary material, which is available to authorized users.
Porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are the causative agents of highly fatal acute diarrhea in pigs, resulting in enormous losses in the pig industry worldwide. To develop an effective bivalent oral vaccine against TGEV and PEDV infection, the D antigenic site of the TGEV spike (S) protein and the major antigen site (core neutralizing epitope—COE) of the PEDV S protein were used as immunogens, and the enhanced green fluorescent protein (eGFP) gene was used as a reporter to construct genetically engineered Lactobacillus casei rLpPGF-T7g10-eGFP-6D-COE. The expression of proteins of interest by the recombinant L. casei was confirmed by confocal laser scanning microscopy and a Western blot assay, and the immunogenicity of rLpPGF-T7g10-eGFP-6D-COE in orally immunized mice was evaluated. The results showed that levels of anti-PEDV and anti-TGEV serum immunoglobulin G (IgG) and mucosal secreted immunoglobulin A (sIgA) antibodies obtained from the mice immunized with rLpPGF-T7g10-eGFP-6D-COE, as well as the proliferation levels of lymphocytes, were significantly higher than those in mice orally administered phosphate-buffered saline (PBS) or rLpPG-T7g10. Moreover, the serum IgG antibodies showed neutralizing effects against PEDV and TGEV. Our data suggest that the antibiotic resistance-free genetically engineered L. casei bivalent oral vaccine provides a safe and promising strategy for vaccine development against PEDV and TGEV.
BackgroundPorcine rotavirus infection is a significant cause of morbidity and mortality in the swine industry necessitating the development of effective vaccines for the prevention of infection. Immune responses associated with protection are primarily mucosal in nature and induction of mucosal immunity is important for preventing porcine rotavirus infection.ResultsLactobacillus casei expressing the major protective antigen VP4 of porcine rotavirus (pPG612.1-VP4) or VP4-LTB (heat-labile toxin B subunit from Echerichia coli) (pPG612.1-VP4-LTB) fusion protein was used to immunize mice orally. The expression of recombinant pPG612.1-VP4 and pPG612.1-VP4-LTB was confirmed by SDS-PAGE and Western blot analysis and surface-displayed expression on L. casei was verified by immunofluorescence. Mice orally immunized with recombinant protein-expressing L. casei produced high levels of serum immunoglobulin G (IgG) and mucosal IgA. The IgA titters from mice immunized with pPG612.1-VP4-LTB were higher than titters from pPG612.1-VP4-immunized mice. The induced antibodies demonstrated neutralizing effects on RV infection.ConclusionThese results demonstrated that VP4 administered in the context of an L. casei expression system is an effective method for stimulating mucosal immunity and that LTB served to further stimulate mucosal immunity suggesting that this strategy can be adapted for use in pigs.
2018) Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation, ABSTRACT Transmissible gastroenteritis virus (TGEV) infection causes acute enteritis in swine of all ages, and especially in suckling piglets. Small intestinal inflammation is considered a central event in the pathogenesis of TGEV infections, and nuclear factor-kappa B (NF-κB) is a key transcription factor in the inflammatory response. However, it is unclear whether NF-κB is crucial for inducing inflammation during a TGEV infection. Our results show that NF-κB was activated in swine testicular (ST) cells and intestinal epithelial cell lines J2 (IPEC-J2) cells infected with TGEV, which is consistent with the up-regulation of pro-inflammatory cytokines. Treatment of TGEV-infected ST cells and IPEC-J2 cells with the NF-κB-specific inhibitor caused the down-regulation of pro-inflammatory cytokine expression, but did not significantly affect TGEV replication. Individual TGEV protein screening results demonstrated that Nsp2 exhibited a high potential for activating NF-κB and enhancing the expression of pro-inflammatory cytokines. Functional domain analyzes indicated that the first 120 amino acid residues of Nsp2 were essential for NF-κB activation. Taken together, these data suggested that NF-κB activation was a major contributor to TGEV infection-induced inflammation, and that Nsp2 was the key viral protein involved in the regulation of inflammation, with amino acids 1-120 playing a critical role in activating NF-κB. Abbreviations: TCID50: 50% tissue culture infectious dose; DMEM: Dulbecco's Modified Eagle Medium; eNOS: Endothelial nitric oxide synthase; FBS: fetal bovine serum; IFA: Indirect immunofluorescence; IκB: inhibitor of nuclear factor kappa-B; IL: interleukin; IPEC-J2: intestinal epithelial cell
Lactobacillus casei delivering the COE antigen of PEDV conjugated with a M cell-targeting peptide Co1 as an immune adjuvant is a promising oral vaccine candidate for PEDV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.