Objective. Matrix metalloproteinases (MMPs) have long been considered excellent targets for osteoarthritis (OA) treatment. However, clinical utility of broad-spectrum MMP inhibitors developed for this purpose has been restricted by dose-limiting musculoskeletal side effects observed in humans. This study was undertaken to identify a new class of potent and selective MMP-13 inhibitors that would provide histologic and clinical efficacy without musculoskeletal toxicity.Methods. Selectivity assays were developed using catalytic domains of human MMPs. Freshly isolated bovine articular cartilage or human OA cartilage was used in in vitro cartilage degradation assays. The rat model of monoiodoacetate (MIA)-induced OA was implemented for assessing the effects of MMP-13 inhibitors on cartilage degradation and joint pain. The surgical medial meniscus tear model in rats was used to evaluate the chondroprotective ability of MMP-13 inhibitors in a chronic disease model of OA. The rat model of musculoskeletal side effects (MSS) was used to assess whether selective MMP-13 inhibitors have the joint toxicity associated with broad-spectrum MMP inhibitors.Results. A number of non-hydroxamic acidcontaining compounds that showed a high degree of potency for MMP-13 and selectivity against other MMPs were designed and synthesized. Steady-state kinetics experiments and Lineweaver-Burk plot analysis of rate versus substrate concentration with one such compound, ALS 1-0635, indicated linear, noncompeti-
Results from this pilot study suggest that teledermoscopy is feasible and effective as a method for short-term monitoring of clinically atypical nevi. The implementation of teledermoscopy can potentially enhance patient convenience, optimize physician scheduling, and promote efficiency.
Key Points
Question
Does COVID-19 convalescent plasma (CCP), compared with placebo, improve the clinical status of hospitalized patients with COVID-19 requiring noninvasive supplemental oxygen?
Findings
In this randomized clinical trial including 941 patients, based on the World Health Organization 11-point Ordinal Scale for Clinical Improvement, CCP did not benefit 468 participants randomized to CCP compared with 473 randomized to placebo from April 2020 to March 2021. However, in exploratory analyses, CCP appeared to benefit those enrolled from April to June 2020, the period when most participants received high-titer CCP and were not receiving remdesivir and corticosteroids at randomization.
Meaning
In this trial, CCP did not meet prespecified outcomes for efficacy, but high-titer CCP may have benefited hospitalized patients with COVID-19 early in the pandemic when other treatments were not in use, suggesting a heterogenous treatment effect over time.
Key points• Repeated, but not single, in vivo cocaine exposure leads to an experience-dependent potentiation of glutamatergic synapses on hypocretin-producing neurons (hypocretin neurons) in mice.• The locus of synaptic potentiation is at the postsynaptic site of glutamatergic synapses on hypocretin neurons and the up-regulation of AMPA-type glutamate receptors may be involved.• Cocaine-induced synaptic potentiation is long-lasting and exists during the abstinence of cocaine.• The expression of tetanus-induced long-term potentiation is facilitated in hypocretin neurons in cocaine-treated mice.• These results may help us better understand the role of the hypocretin system in behavioural changes related to cocaine addiction in animals and humans.Abstract Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support
The frequency of BRAF V600E mutations differs in naevi distinguished by unique dermoscopic structures and microanatomical growth patterns. Globular naevi, which most often histologically correspond to a predominantly dermal growth pattern and/or the presence of large junctional nests, are significantly more likely to express BRAF V600E than reticular naevi. These preliminary results require validation, but may directly inform future studies of naevogenesis and melanoma genesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.