This article describes the deposition of AlF3/polyimide nanolaminate film by inorganic-organic atomic layer deposition (ALD) at 170 °C. AlCl3 and TiF4 were used as precursors for AlF3. Polyimide layers were deposited from PMDA (pyromellitic dianhydride, 1,2,3,5-benzenetetracarboxylic anhydride) and DAH (1,6-diaminohexane). With field-emission scanning electron microscopy (FESEM) and X-ray reflection (XRR) analysis, it was found that the topmost layer (nominally 10 nm in thickness) of the nanolaminate film (100 nm total thickness) changed when exposed to the atmosphere. After all, the effect on roughness was minimal. The length of a delay time between the AlF3 and polyimide depositions was found to affect the sharpness of the nanolaminate structure. Electrical properties of AlF3/polyimide nanolaminate films were measured, indicating an increase in dielectric constant compared to single AlF3 and a decrease in leakage current compared to polyimide films, respectively.
This paper presents preparation of boron‐doped Al2O3 thin films by atomic layer deposition (ALD) using phenylboronic acid (PBA) and trimethylaluminum (TMA) as precursors. Deposition temperatures of 160–300 °C are studied, giving a maximum growth per cycle (GPC) of 0.77 Å at 200 °C. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) are used to study the surface morphology and roughness of the films. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), Time‐of‐flight elastic recoil detection analysis (ToF‐ERDA), and X‐ray photoelectron spectroscopy (XPS) are used to study the composition of the films. An annealing process is carried out at 450 °C for 1 h to investigate its effect on the elemental composition and electrical properties of the boron‐doped Al2O3 thin films. The boron‐doped Al2O3 70 nm thick film deposited at 200 °C has a boron content of 3.7 at.% with low leakage current density (10−9 to 10−6 A cm−2) when the film thickness is 70 nm. The dielectric constant of this boron doped Al2O3 film is 5.18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.