The influence of the ultra-short pulse wavelength on the populations in the three electronic states of CsI molecule is investigated using the time-dependent wave packet method. The calculated results show that the populations in the two excited states approach to the maxima at the wavelengths of 369 nm and 297 nm, respectively. The photodissociation reaction channels of the CsI molecule can be chosen by controlling the pump pulse wavelength.
Using the time-dependent wavepacket method and employing the four-state model,the influence of the laser intensity on the population of the NO molecule electronic states are calculated in this paper. The populations of the electronic states of the NO are given by the wavefunctions obtained by solving the Schrdinger equation through the split-operator Fourier transform method. The calculated results show that different pump pulse intensities have different influences on the population of the electronic states of NO. By changing the pulse intensity,the ionization ratio can be controlled,which will benefit the light manipulation of atomic and molecular processes.
Employing the two-state model and the time-dependent wave packet method, the influence of femtosecond laser wavelength on the evolution of the double-minimum electronic excited state wave packet is numerically investigated. For different laser wavelengths, evolutions of the double-minimum electronic excited state wave packet with time and internuclear distance are different. One can control the evolution of the wave packet by varying the laser wavelength appropriately, which will benefit the light manipulation of atomic and molecular processes. Furthermore, study of the dynamics of the NaRb molecule may yield clues to creating an ultracold molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.