Ba<sub>x</sub>Sr<sub>1-x</sub>TiO<sub>3</sub>(BST) ferroelectric thin films are widely used in microwave tunable devices due to their high dielectric constant, strong electric field tunability and low microwave loss. However, because of the temperature dependence of dielectric constant in ferroelectric materials, the high-tunability for conventional single component ferroelectric thin films can only be achieved in the vicinity of Curie Temperature (<i>T</i><sub>C</sub>) which results in that the ferroelectric thin films are difficult to apply to wide temperature range. To obtain ferroelectric thin films available for temperature stable functional devices, single composition Ba<sub>0.2</sub>Sr<sub>0.8</sub>TiO<sub>3</sub> thin films, Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> thin films and heterostructure ofBa<sub>0.2</sub>Sr<sub>0.8</sub>TiO<sub>3</sub>/Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> thin films are deposited by pulsed laser deposition (PLD). By comparing with their dielectric properties in a wide temperature range, it’s found that the temperature sensitivity of BST films can be effectively reduced by introducing a composition gradient along the epitaxial direction. However, the heterostructure engineering may bring extra troubles caused by interfaces, which may limit the quality factor <i>Q</i>. In this paper, we extend our combinatorial film deposition technique to ferroelectric materials, and successfully fabricated in-plane composition-spread Ba<sub>1-<i>x</i></sub>Sr<i><sub>x</sub></i>TiO<sub>3</sub> thin films, which are expected to broaden the phase transition temperature range of BST films while avoiding the problem of interface control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.