Sign language recognition(SLR) is a multidisciplinary research topic in pattern recognition and computer vision. Due to large amount of data from the continuous frames of sign language videos, selecting representative data to eliminate irrelevant information has always been a challenging problem in data preprocessing of sign language samples. In recent years, skeletal data emerged as a new type of data but received insufficient attention. Meanwhile, due to the increasing diversity of sign language features, making full use of them has also been an important research topic. In this paper, we improve keyframecentered clips(KCC) sampling to get a new kind of sampling method called optimized keyframe-centered clips(OptimKCC) sampling to select key actions from sign language videos. Besides, we design a new kind of skeletal feature called Multi-Plane Vector Relation(MPVR) to describe the video samples. Finally, combined with the attention mechanism, we also use Attention-Based networks to distribute weights to the temporal features and the spatial features extracted from skeletal data. We implement comparison experiments on our own and the public sign language dataset under the Signer-Independent and the Signer-Dependent circumstances to show the advantages of our methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.