The high heterogeneity of petroleum reservoirs, represented by their spatially varying rock properties (porosity and permeability), greatly dictates the quantity of recoverable oil. In this work, the estimation of the spatial permeability distribution, which is crucial for predicting the future performance of a reservoir, is carried out through a history matching technique based on constrained ensemble Kalman filtering (EnKF). The main contribution in this work is the novel implementation of hard and soft constraints in the recursive EnKF estimation methodology for petroleum reservoirs. Hard data is obtained from the actual values of the reservoir parameters at discrete locations obtained by core sampling and well logging, while the soft data considered is obtained from correlograms, which characterize the spatial correlation of the rock properties in a reservoir. In each time update, the parameter estimates obtained from the unconstrained EnKF are modified by one of two novel algorithms. In the first, the correlation matrix obtained after the unconstrained EnKF update is transformed to honour the true correlation structure from the correlogram by applying a projection-based method. The second algorithm involves the use of a technique for soft constrained covariance localization. We observe that the soft data constrained localization method results in the best estimates of the permeability and also reduces the computational time significantly. We quantify the improvement in estimation performance of each of the constrained methods over unconstrained estimation. The method, while developed for estimation in petroleum reservoirs, is also generally applicable to systems with spatial heterogeneity and underlying spatial correlations.
Abstract.A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF), is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF) and the Diffuse Ensemble Transform Kalman Filter (DETKF), are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.