Booming fish farming results in relative shortage of fish oil (FO), making it urgent to explore alternative lipid sources. This study comprehensively investigated the efficacy of FO replacement with poultry oil (PO) in diets of tiger puffer (average initial body weight, 12.28 g). An 8-week feeding trial was conducted with experimental diets, in which graded levels (0, 25, 50, 75, and 100%, named FO-C, 25PO, 50PO, 75PO, and 100PO, respectively) of FO were replaced with PO. The feeding trial was conducted in a flow-through seawater system. Each diet was fed to triplicate tanks. The results showed that FO replacement with PO did not significantly affect the growth performance of tiger puffer. FO replacement with PO at 50-100% even slightly increased the growth. PO feeding also had marginal effects on fish body composition, except that it increased the liver moisture content. Dietary PO tended to decrease the serum cholesterol and malondialdehyde content but increase the bile acid content. Increasing levels of dietary PO linearly upregulated the hepatic mRNA expression of the cholesterol biosynthesis enzyme, 3-hydroxy-3-methylglutaryl-CoA reductase, whereas high levels of dietary PO significantly upregulated the expression of the critical regulatory enzyme of bile acid biosynthesis, cholesterol 7-alpha-hydroxylase. In conclusion, poultry oil is a good substitution for fish oil in the diets of tiger puffer. Poultry oil could replace 100% added fish oil in the diet of tiger puffer, without adverse effects on growth and body composition.
Booming fish farming results in a relative shortage of fish oil (FO) supply, meaning that alternative oils are increasingly used in fish feeds, which leads to reduction of long-chain polyunsaturated fatty acids (LC-PUFAs) and other relevant changes in fish products. This study investigated the efficacy of an FO-finishing strategy in recovering the muscle quality of farmed tiger puffer. An eight-week feeding trial (growing-out period) was conducted with five experimental diets, in which graded levels (0 (control), 25, 50, 75, and 100%) of added FO were replaced by poultry oil (PO). Following the growing-out period was a four-week FO-finishing period, during which fish in all groups were fed the control diet. Dietary PO significantly decreased the muscle LC-PUFA content, whereas in general, the FO-finishing strategy recovered it to a level comparable with that of the group fed FO continuously. The recovery efficiency of EPA was higher than that of DHA. Dietary PO also led to changes of volatile flavor compounds in the muscle, such as butanol, pentenal, and hexenal, whereas the FO-finishing strategy mitigated the changes. In conclusion, the FO-finishing strategy is promising in recovering the LC-PUFA and volatile-flavor-compound composition in farmed tiger puffer after the feeding of PO-based diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.