Nano-hydroxyapatite (n-HA)/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) composite membranes were prepared by solvent casting and evaporation method. The structure and properties of the membranes were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), water contact angle measurements, in vitro hydrolytic degradation, mechanical test, and cell culture. The effect of n-HA content on physical-chemical properties of the n-HA/PCEC composite membranes was studied. The results showed that the shape and size of micropores of the composite membranes changed with n-HA content increased; the tensile strength decreased with the increase of n-HA content. The osteoblast cell was cultured on the membranes, good cell attachment and growth manner were observed after postseeding for 1 day. MTT assays showed that the n-HA/PCEC membranes had no negative effect on the cell viability and proliferation. These results suggested that the obtained n-HA/PCEC composite membranes in this study might have prospective applications in tissue engineering field.
The morphological differences of chitosan (CS) in the hydroxyapatite (HA)/CS nanocomposites were investigated in detailed, which were prepared via in situ hydrothermal precipitation. The results show that the obtained nanocomposites have excellent crystallinity and the crystal has excellent ordered structure, which is important to the composites performances in the biomedical application. Moreover, the CS arrangement and crystallinity in the composites greatly depend on the hydrothermal temperature and the pH value of precipitating agent. The temperature ranging from 373 to 413K and pH value of precipitating agent ranging from 12 to 14 were favorable to the crystallization and oriented growth of CS molecules in the composites. The CS crystals with better arrangement are assembled in the order of layer-by-layer in these composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.