An inorganic-organic hybrid monolith incorporated with stellated mesoporous silica nanoparticles (SMSNs) was prepared. Using binary solvents, deep eutectic solvents and room temperature ionic liquids, an SMSN-incorporated poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith demonstrated uniform structure with good column permeability. A systematic investigation of preparation parameter was performed, including SMSN content, crosslinking monomer content, and the component of binary solvent. The optimized monoliths were characterized by field emission scanning electron microscopy, transmission electron microscopy, area scanning energy dispersive spectrometry, and nitrogen adsorption. Column performance was tested by separating four groups of analytes (alkylbenzenes, anilines, naphthalenes and phenols) by capillary electrochromatography (CEC). Baseline separation of all analytes was obtained with column efficiencies of up to 266,000 plates m. The performance of the resulting monolith was further investigated in detail by separating mixtures of polycyclic aromatic hydrocarbons (PAHs), nonsteroidal antiinflammatory drugs (NSAIDs), and hydroxybenzoic acid isomers. Compared with the corresponding SMSN-free monolith, the CEC performance was improved by about six times. Successful extraction of PAHs and quinolones (QNs) were also performed using this capillary. Improved extraction efficiency (20.2%) for complex samples, lake water, was also found when the material was applied to solid phase microextraction of fluoranthene. Graphical abstract A poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith incorporated with stellated mesoporous silica nanoparticles was prepared. It demonstrated column efficiency up to 266,000 plates m in capillary electrochromatography and ability as solid phase microextraction for organic small molecules with good column permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.