Ischemic stroke is the most common type of cerebrovascular disease with high mortality and poor prognosis, and cerebral ischemia-reperfusion (CI/R) injury is the main murderer. Here, we attempted to explore the effects and mechanism of Xuesaitong (XST) combined with dexmedetomidine (Dex) on CI/R injury in rats. First, a rat model of CI/R injury was constructed via the middle cerebral artery occlusion (MCAO) method and treated with XST and Dex alone or in combination. Then, on the 5th and 10th days of treatment, the neurological impairment was assessed using the modified neurological severity scores (mNSS), the 8-arm radial maze test (8ARMT), novel object recognition test (NORT), and fear conditioning test (FCT). H&E staining was performed to observe the pathological changes of the hippocampus. ELISA and related kits were used to assess the monoamine neurotransmitters and antioxidant enzyme activities in the hippocampus. The ATP, mitochondrial membrane potential levels, and qRT-PCR of genes related to mitochondrial function were determined to assess mitochondrial functions in the hippocampus and western blot to determine Keap1/Nrf2 signaling pathway and mitophagy-related protein expression. The results showed that XST combined with Dex significantly reduced mNSS, improved spatial memory and learning deficits, and enhanced fear memory and cognitive memory ability in CI/R rats, which was superior to single-drug treatment. Moreover, XST combined with Dex treatment improved hippocampal histopathological damage; significantly increased the levels of monoamine neurotransmitters, neurotrophic factors, ATP, and mitochondrial membrane potential; and upregulated the activities of antioxidant enzymes and the expression of mitophagy-related proteins in the hippocampus of CI/R rats. XST combined with Dex treatment also activated the Keap1/Nrf2 signaling and upregulated the protein expression of downstream antioxidant enzymes HO-1 and NQ. Altogether, this study showed that a combination of XST and Dex could activate the Keap1/Nrf2 signaling and mitophagy to protect rats from CI/R-related neurological impairment.
Objective. To observe the controlled effect of dexmedetomidine for neurosurgery and the effect on postoperative cognitive function. The main task of this paper is to use data from a small sample. The proposed feature extraction algorithm based on the bilinear convolutional neurological network (BCNN) is based on a small sample of data. BCNN involves the simultaneous extraction of highly discriminative cross-sectional features from the input image using two parallel subnetworks. By optimizing the algorithm to minimize losses, the two subnetworks can be supervised by each other, improving the performance of the network and obtaining accurate recognition results without spending a lot of time adjusting parameters. The mean arterial pressure (MAP) and heart rate (HR) levels of cerebral oxygen metabolism were compared between the two groups before (T0), after (T1), immediately after (T2), and after intubation (T3). In the observation group, MAP and HR values at T3, arterial-internal jugular vein bulb oxygen difference [ D a − j v O 2 ] at T1, T2, and T3, cerebral oxygen uptake ( CEO 2 ) levels, and postawakening agitation scores were lower than those of the control group during the same period ( P < 0.05 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.