This article studies the relation between fabric tightness and shielding effectiveness (SE) of blended electromagnetic shielding fabric (BESF). The SE of different tightness BESFs is tested using a waveguide testing method. Experimental analyses show that the SE of BESF associates to the tightness linearly, the SEs of same tightness fabrics are consistent under same metal fiber contents, same weave types and different yarn linear densities condition, and the SEs of different type fabrics are inconsistent under same tightness, same metal fiber contents and same yarn densities condition. Moreover, a theory about the relation between the SE and the tightness determined by adjacent yarns states is proposed according to the electromagnetic theory. A number of computation equations about tightness boundary determination are given, which would provide reference for the BESF design, manufacture and testing.
Stereotactic body radiotherapy (SBRT) has shown promising results in the control of macroscopic vascular invasion in patients with hepatocellular carcinoma (HCC); however, its efficacy in comparison to sorafenib when combined with transarterial chemoembolization (TACE) remains to be determined. Between 2009 and 2017, 77 HCC patients with macroscopic vascular invasion receiving TACE–SBRT or TACE–sorafenib combination therapies were enrolled. The best treatment responses, overall survival (OS), and progression-free survival (PFS) of the two treatment arms were compared. Of the patients enrolled, 26 patients (33.8%) received TACE–SBRT treatment, and 51 (66.2%) received TACE–sorafenib treatment. The patients in the TACE–SBRT group were more frequently classified as elder in age (p = 0.012), having recurrent disease (p = 0.026), and showing lower rates of multiple hepatic lesions (p = 0.005) than patients in TACE–sorafenib group. After propensity score matching (PSM), 26 pairs of well-matched HCC patients were selected; patients in the TACE–SBRT group showed better overall response rates in trend compared to those in the TACE–sorafenib group. The hazard ratio (HR) of OS to PFS for the TACE–SBRT approach and the TACE–sorafenib approach was 0.36 (95% CI, 0.17–0.75; p = 0.007) and 0.35 (95% CI, 0.20–0.62; p < 0.001), respectively. For HCC patients with macrovascular invasion, TACE plus SBRT could provide improved OS and PFS compared to TACE–sorafenib therapy.
PurposeThe change rules of the shielding effectiveness (SE) of the sleeve has not been clarified, which leads to the lack of the basis for the design, manufacture and evaluation of the electromagnetic shielding (EMS) clothing.Design/methodology/approachAccording to a simplified analysis model, a series of sleeve samples with different fabrics and styles are designed and manufactured. The SE of the sleeve is tested with the proposed special test method in a semi-anechoic chamber to analyze the influence of different factors on the SE of the sleeve.FindingsThe SE is greatly reduced about 60–90% after the fabric is manufactured into the sleeve. The larger the sleeve length is, the higher the peak value of the SE is. When the sleeve length is low, the SE value is easy to appear negative. As the cuff circumference increases, the SE of the sleeve will change with the frequency band. The influence of the cuff style on the SE of the sleeve mainly depends on the cuff width and style. The larger the cuff width is, the lower the overall SE of the sleeve is. The more wrinkles there are at the cuff, the better the SE of the sleeve is.Originality/valueOur results provide a reference for the design, production and evaluation of the sleeve and the whole EMS clothing.
This study used the DR-SO4 window method to test the shielding effectiveness of silver-plated fiber functional fabric, copper–nickel duplicate coating fabric, and stainless steel fiber-blended-type fabric. These electromagnetic shielding fabrics exhibited different levels of shielding effectiveness under different polarization directions. In the same frequency, the shielding effectiveness difference between the vertical polarization wave direction and horizontal or 45° polarization wave direction is higher in silver-plated fiber functional fabric and copper–nickel duplicate coating fabric than that in stainless steel fiber-blended fabric. The radiation distance of 1.5 m has great influence on the shielding effectiveness of the three fabrics. These fabrics show a repeated and intersected change in wrinkle degrees of 1# and 2#. The fabrics in the wrinkle degree of 2# have higher shielding effectiveness than that of 3#. The wrinkle recovery properties of electromagnetic shielding fabrics also affect their shielding effectiveness. The shielding effectiveness of copper–nickel duplicate coating fabric with low wrinkle recovery property considerably changes. This research provides a basis for the design of electromagnetic shielding fabrics.
More metal fiber content of blended electromagnetic shielding (EMS) fabric results in higher shielding effectiveness (SE) of the fabric. However, there is little information about the influence of the metal fiber content on the SE considering the fabric structure. This study constructs an index of metal fiber content per unit area (MFCPUA), and discusses the influence of the metal fiber content on the SE of the EMS fabric when fabric parameters are changed. Computations for the MFCPUA and the thickness and porosity of the metal fiber arrangement are given, and then experiments are designed to test the SE of different EMS fabric samples. According to the experimental results, the influence of the MFCPUA on the SE is analyzed and influence mechanism is discussed when the fabric weaves, emission frequencies and weft and warp densities are changed. The results show that the MFCPUA and the SE are in positive increase relation; the frequency and the SE are in the negative increase relation when the metal fiber content is unchanged. The influence of the fabric weave type on the SE depends on the length of the yarn floats; the SE values of fabric with the same weave are the same when the MFCPUA is the same regardless of the fabric density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.