Although variants in many genes have previously been shown to be associated with blood pressure (BP) levels, the molecular mechanism underlying these associations are mostly unknown. We identified a multi-allelic T-rich sequence (TRS) in the 3’UTR of ATP1B1 that varies in length and sequence composition (T22-27 and T12GT 3GT6). The 3’UTR of ATP1B1 contains 2 functional polyadenylation signals and the TRS is downstream of the proximal polyadenylation site (A2). Therefore, we hypothesized that alleles of this TRS might influence ATP1B1 expression by regulating alternative polyadenylation. In vitro, the T12GT 3GT6 allele increases polyadenylation at the A2 polyadenylation site as compared to the T23 allele. Consistent with our hypothesis, the relative abundance of the A2-polyadenylated ATP1B1 mRNA was higher in human kidneys with at least one copy of the T12GT 3GT6 allele than in those lacking this allele. The T12GT 3GT6 allele is also associated with higher systolic BP (beta = 3.3 mmHg, p = 0.014) and diastolic BP (beta = 2.4 mmHg, p = 0.003) in a European-American population. Therefore, we have identified a novel multi-allelic TRS in the 3’UTR of ATP1B1 that is associated with higher BP and may mediate its effect by regulating the polyadenylation of the ATP1B1 mRNA.
This study used the DR-SO4 window method to test the shielding effectiveness of silver-plated fiber functional fabric, copper–nickel duplicate coating fabric, and stainless steel fiber-blended-type fabric. These electromagnetic shielding fabrics exhibited different levels of shielding effectiveness under different polarization directions. In the same frequency, the shielding effectiveness difference between the vertical polarization wave direction and horizontal or 45° polarization wave direction is higher in silver-plated fiber functional fabric and copper–nickel duplicate coating fabric than that in stainless steel fiber-blended fabric. The radiation distance of 1.5 m has great influence on the shielding effectiveness of the three fabrics. These fabrics show a repeated and intersected change in wrinkle degrees of 1# and 2#. The fabrics in the wrinkle degree of 2# have higher shielding effectiveness than that of 3#. The wrinkle recovery properties of electromagnetic shielding fabrics also affect their shielding effectiveness. The shielding effectiveness of copper–nickel duplicate coating fabric with low wrinkle recovery property considerably changes. This research provides a basis for the design of electromagnetic shielding fabrics.
Purpose The three-dimensional arrangement structure of the conductive fiber is an important factor of the shielding effectiveness of the electromagnetic shielding fabric (EMSF). However, until now, the three-dimensional arrangement structure has not been described because of the complex structure, which leads to many difficulties for the subsequent analysis of the electromagnetic characteristics. Therefore, the purpose of this paper is to propose a feature extraction method to describe the arrangement structure of the conductive fiber based on the three-dimensional calibration and image processing technology, providing a new idea for the above problem. Design/methodology/approach First, the three-dimensional positions of the conductive fibers in the EMSF are calibrated using the VHX-600 3D digital microscope and the MATLAB7.5 software. The arrangement characteristics of the conductive fibers are analyzed, and equivalent twist, cross-sectional content, and average angle of a single fiber are proposed to describe the arrangement characteristic of the conductive fiber. Then, a digital description model of the conductive fiber is constructed according to the feature parameters and its three-dimensional structures are reproduced using CATIA. Finally, the reliability of the model is verified by an FDTD example, and the significance and application of the model are given. Findings The proposed method can provide the feature extraction and description for the complex spatial three-dimensional arrangement structure of conductive fibers. The feature parameters can reflect different micro arrangement features of the conductive fiber. The proposed idea and method can provide a solid foundation for subsequent studies of the electromagnetic properties of the EMSF. Originality/value The study in this paper is of great significance and academic value. This paper provides a new three-dimensional calibration method and constructs multiple feature parameters to describe the complex three-dimensional arrangement structure, providing a new effective method to overcome the problem of the conductive fiber description. The proposed method provides an important basis for the shielding mechanism, transmission characteristics, electromagnetic calculation and product design, and woven technology of the EMSF.
Live working shielding clothing must be worn when working under the high-pressure environment. High voltage and electromagnetic waves are shielded by conducting principle, so as to reduce the harm to human body. At present, the relationship between the point to point resistance and the structure of clothing is not clear in the production and research of shielding clothing, its design, production, and test lack of theoretical guidance. In this paper, the electrical conductivity of the clothing is studied by measuring the point to point resistance of shielding clothing. The suitable method of measuring point to point resistance is designed, and test platform is build by U610E's digital multimeter and homemade special electrode and other equipment. The representative points are selected from the main latitude lines of clothing and the parts of contacting electrified equipment when wearing clothes, then measure the resistance value between different points. Through the analysis of the experimental results it can be found that, on the basis of good connection, the farther the distance between two points, the smaller the resistance value and the better the connectivity; the resistance value of the points that frequently contact with electrified equipment is significantly smaller than others; about the same distance of two points, if there is structure line in the middle, the resistance value is large; the structural complexity is proportional to the resistance value. It is concluded that the point to point resistance of shielding garment is related to the parts of contacting with electrified equipment during operation, the complexity of structure, and other relevant factors. In the design and production, we should focus on reducing the resistance value between the most distal of clothing, the parts of contacting electrification equipment and limbs, in order to increase its connectivity; the structural design of clothing should be simplified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.