A new wurtzite phase Cu(2)ZnSnS(4) was discovered and the corresponding nanocrystals have been successfully synthesized. They have been characterized in detail and showed the photoelectric response, which demonstrated their potential in the application of photovoltaic devices.
Biomethylation is the major human metabolic pathway for inorganic arsenic, and the speciation of arsenic metabolites is essential to a better understanding of arsenic metabolism and health effects. Here we describe a technique for the speciation of arsenic in human urine and demonstrate its application to the discovery of key arsenic metabolic intermediates, monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), in human urine. The study provides a direct evidence in support of the proposed arsenic methylation pathway in the human. The finding of MMAIII and DMAIII in human urine, along with recent studies showing the high toxicity of these arsenicals, suggests that the usual belief of arsenic detoxification by methylation needs to be reconsidered. The arsenic speciation technique is based on ion pair chromatographic separation of arsenic species on a 3-micron particle size column at 50 degrees C followed by hydride generation atomic fluorescence detection. Speciation of MMAIII, DMAIII, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) in urine samples is complete in 6 min with detection limits of 0.5-2 micrograms/L. There is no need for any sample pretreatment. The capability of rapid analysis of trace levels of arsenic species, which resulted in the findings of the key metabolic intermediates, makes the technique useful for routine arsenic speciation analysis required for toxicological and epidemiological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.