No abstract
Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.
Biomethylation is the major human metabolic pathway for inorganic arsenic, and the speciation of arsenic metabolites is essential to a better understanding of arsenic metabolism and health effects. Here we describe a technique for the speciation of arsenic in human urine and demonstrate its application to the discovery of key arsenic metabolic intermediates, monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), in human urine. The study provides a direct evidence in support of the proposed arsenic methylation pathway in the human. The finding of MMAIII and DMAIII in human urine, along with recent studies showing the high toxicity of these arsenicals, suggests that the usual belief of arsenic detoxification by methylation needs to be reconsidered. The arsenic speciation technique is based on ion pair chromatographic separation of arsenic species on a 3-micron particle size column at 50 degrees C followed by hydride generation atomic fluorescence detection. Speciation of MMAIII, DMAIII, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) in urine samples is complete in 6 min with detection limits of 0.5-2 micrograms/L. There is no need for any sample pretreatment. The capability of rapid analysis of trace levels of arsenic species, which resulted in the findings of the key metabolic intermediates, makes the technique useful for routine arsenic speciation analysis required for toxicological and epidemiological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.