The microstructure of alkali-reactive aggregates, especially the spatial distribution of the pore and reactive silica phase, plays a significant role in the process of the alkali silica reaction (ASR) in concrete, as it determines not only the reaction front of ASR but also the localization of the produced expansive product from where the cracking begins. However, the microstructure of the aggregate was either simplified or neglected in the current ASR simulation models. Due to the various particle sizes and heterogeneous distribution of the reactive silica in the aggregate, it is difficult to obtain a representative microstructure at a desired voxel size by using non-destructive computed tomography (CT) or focused ion beam milling combined with scanning electron microscopy (FIB-SEM). In order to fill this gap, this paper proposed a model that simulates the microstructures of the alkali-reactive aggregate based on 2D images. Five representative 3D microstructures with different pore and quartz fractions were simulated from SEM images. The simulated fraction, scattering density, as well as the autocorrelation function (ACF) of pore and quartz agreed well with the original ones. A 40×40×40 mm3 concrete cube with irregular coarse aggregates was then simulated with the aggregate assembled by the five representative microstructures. The average pore (at microscale μm) and quartz fractions of the cube matched well with the X-ray diffraction (XRD) and Mercury intrusion porosimetry (MIP) results. The simulated microstructures can be used as a basis for simulation of the chemical reaction of ASR at a microscale.
A comprehensive method for quantitatively appraising the safety rating of masonry structure is proposed which is able to reflect the difference in the same safety level. The analytic hierarchy process (AHP), fuzzy theory, and the grey clustering theory were applied based on the fuzzy-grey characteristics and the structural safety factors of the building system. A four-layer safety evaluation model of masonry structure considering its structural features was established by using AHP method and a three-level fuzzy comprehensive evaluation model was elaborated. Then, the weight coefficient vector of each layer was calculated according to the expert experience and existing research results. Based on the grey clustering method and the fuzzy evaluation model, the evaluation matrix of every layer was established. Finally, this method was applied to a practical masonry structure. Not only the result was in agreement with the appraisal result according to Chinese standard method, but also it quantitatively evaluates the safety grade of every factor in every layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.