Sex steroids can positively affect the brain function, and low levels of sex steroids may be associated with worse cognitive function in the elderly men. However, previous studies reported contrary findings on the relationship between testosterone level and risk of Alzheimer's disease in the elderly men. The objective of this study was to comprehensively assess the relationship between low testosterone level and Alzheimer's disease risk in the elderly men using a meta-analysis. Only prospective cohort studies assessing the influence of low testosterone level on Alzheimer's disease risk in elderly men were considered eligible. Relative risks (RRs) with 95% confidence intervals (95% CI) were pooled to assess the risk of Alzheimer's disease in elderly men with low testosterone level. Seven prospective cohort studies with a total of 5251 elderly men and 240 cases of Alzheimer's disease were included into the meta-analysis. There was moderate degree of heterogeneity among those included studies (I(2) = 47.2%). Meta-analysis using random effect model showed that low plasma testosterone level was significantly associated with an increased risk of Alzheimer's disease in elderly men (random RR = 1.48, 95% CI 1.12-1.96, P = 0.006). Sensitivity analysis by omitting one study by turns showed that there was no obvious change in the pooled risk estimates, and all pooled RRs were statistically significant. This meta-analysis supports that low plasma testosterone level is significantly associated with increased risk of Alzheimer's disease in the elderly men. Low testosterone level is a risk factor of worse cognitive function in the elderly men.
BackgroundApoptosis plays a critical role in the progression of diabetic cardiomyopathy (DC). Astragalus polysaccharides (APS), an extract of astragalus membranaceus (AM), is an effective cardioprotectant. Currently, little is known about the detailed mechanisms underlying cardioprotective effects of APS. The aims of this study were to investigate the potential effects and mechanisms of APS on apoptosis employing a model of high glucose induction of apoptosis in H9C2 cells.MethodsA model of high glucose induction of H9C2 cell apoptosis was adopted in this research. The cell viabilities were analyzed by MTT assay, and the apoptotic response was quantified by flow cytometry. The expression levels of the apoptosis related proteins were determined by Real-time PCR and western blotting.ResultsIncubation of H9C2 cells with various concentrations of glucose (i.e., 5.5, 12.5, 25, 33 and 44 mmol/L) for 24 h revealed that cell viability was reduced by high glucose dose-dependently. Pretreatment of cells with APS could inhibit high glucose-induced H9C2 cell apoptosis by decreasing the expressions of caspases and the release of cytochrome C from mitochondria to cytoplasm. Further experiments also showed that APS could modulate the ratio of Bcl-2 to Bax in mitochondria.ConclusionsAPS decreases high glucose-induced H9C2 cell apoptosis by inhibiting the expression of pro-apoptotic proteins of both the extrinsic and intrinsic pathways and modulating the ratio of Bcl-2 to Bax in mitochondria.
BackgroundLow serum cholesterol levels are related to an increased risk of depression and its serious consequences. However, the effect of central cholesterol on depressive disorder and its potential regulatory mechanism is poorly understood. Therefore, brain cholesterol in patients with depression may not only decrease the risk for developing this disease but also increase the beneficial effects of treatment for depression.MethodsIn current study, rats were exposed to chronic mild stress (CMS) for consecutive 28 days, and the depressive-like behavior was tested by sucrose preference test, immobility in the forced swim test, locomotor activity in the open field test, decreased bodyweight and food intake. Additionally, the total cholesterol levels in the medial prefrontal cortex (mPFC) and the hippocampus of rats were measured by gas chromatograph mass spectrometer. Finally, 5-HT1A receptor antagonist WAY100635 was used to determine the potential role of serotonin system in the interaction between central cholesterol and depression.ResultsCMS significantly reduced total cholesterol levels in the mPFC but not in the hippocampus and resulted in depressive-like behavior. Chronic supplementation of cholesterol by food reversed the depressive-like behavior induced by CMS. Furthermore, pre-injection of 5-HT1A receptor antagonist WAY100635 into the mPFC blocked the treatment effects of cholesterol on the reversal of behavioral response.ConclusionThis finding suggested that cholesterol in the mPFC may have an impact on the sensitivity of the 5-HT1A receptor in the development and treatment of depression. The treatment benefits of cholesterol could be through modulation of the brain 5-HT1A receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.