Abstract. microRNAs (miRNAs/miRs) are crucial regulators of gene expression at the post-translational level through promoting mRNA degradation or the repression of translation of target genes. miRs have been confirmed to serve a dominant role in tumor biology. miR-486-5p has been ascertained to be involved in non-small-cell lung cancer, breast cancer and hepatocellular carcinoma; however, the expression and function of miR-486-5p in esophageal squamous cell carcinoma (ESCC) has yet to be elucidated. The present study aimed to analyze the expression levels of miR-486-5p in ESCC tissues and paired normal adjacent tissues, and determine the effects of miR-486-5p on esophageal cancer cells using MTT, wound scratch and apoptosis assays. The current results showed that miR-486-5p was significantly downregulated in ESCC specimens. Ectopic expression of miR-486-5p by synthetic mimics reduced cell proliferation and migration and induced increased cell apoptosis. The results indicated miR-486-5p may function as a tumor suppressor in ESCC. The present study demonstrated that miR-486-5p was downregulated in ESCC and served a anti-oncogene role in ESCC via affecting cellular migration.
Abstract. MicroRNAs (miRs) are small endogenous non-coding RNAs that play a vital role in carcinogenesis. miR-193a-3p has been described in multiple cancers. However, the function of miR-193a-3p in esophageal squamous cell carcinoma (ESCC) is still unclear. To explore the role of miR-193a-3p in ESCC, reverse transcription-quantitative polymerase chain reaction was used to evaluate the expression of miR-193a-3p in 48 paired ESCC and adjacent normal tissues. In addition, the impact of miR-193a-3p on cell proliferation, migration and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound scratch assay and flow cytometry, respectively. The results revealed that miR-193a-3p was upregulated in ESCC, compared with adjacent normal tissues. Downregulation of miR-193a-3p expression using a synthesized inhibitor suppressed cell proliferation and migration, and induced cell apoptosis, indicating that miR-193a-3p could be characterized as an oncogene in ESCC. In summary, the present study demonstrated that miR-193a-3p was upregulated in ESCC, where it plays a significant role by affecting cellular proliferation, migration and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.