This paper proposes an image dehazing model built with a convolutional neural network (CNN), called All-in-One Dehazing Network (AOD-Net). It is designed based on a reformulated atmospheric scattering model. Instead of estimating the transmission matrix and the atmospheric light separately as most previous models did, AOD-Net directly generates the clean image through a light-weight CNN. Such a novel endto-end design makes it easy to embed AOD-Net into other deep models, e.g., Faster R-CNN, for improving high-level task performance on hazy images. Experimental results on both synthesized and natural hazy image datasets demonstrate our superior performance than the state-of-the-art in terms of PSNR, SSIM and the subjective visual quality. Furthermore, when concatenating AOD-Net with Faster R-CNN and training the joint pipeline from end to end, we witness a large improvement of the object detection performance on hazy images.
Speech enhancement is challenging because of the diversity of background noise types. Most of the existing methods are focused on modelling the speech rather than the noise. In this paper, we propose a novel idea to model speech and noise simultaneously in a two-branch convolutional neural network, namely SN-Net. In SN-Net, the two branches predict speech and noise, respectively. Instead of information fusion only at the final output layer, interaction modules are introduced at several intermediate feature domains between the two branches to benefit each other. Such an interaction can leverage features learned from one branch to counteract the undesired part and restore the missing component of the other and thus enhance their discrimination capabilities. We also design a feature extraction module, namely residual-convolution-and-attention (RA), to capture the correlations along temporal and frequency dimensions for both the speech and the noises. Evaluations on public datasets show that the interaction module plays a key role in simultaneous modeling and the SN-Net outperforms the state-of-the-art by a large margin on various evaluation metrics. The proposed SN-Net also shows superior performance for speaker separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.