Electrospinning micro- and nanofibers are being increasingly investigated for drug delivery. The components and their stimuli-responsive properties of fibers are important factors influencing the drug release behavior. The aim of this study is to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)/poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) nanofibers by single-spinneret electrospinning technique. The electrospun nanofibers are used as a drug carrier by cospinning with nifedipine (NIF), and the release behaviors of NIF from the thermoresponsive nanofibers can be controlled by the response of nanofibers with temperature. The morphology of the nanofibers and its composites with NIF was determined by scanning electron microscopy (SEM). The hydrogen bond interactions between PNIPAAm/PAMPS and the water-insoluble drug of NIF were introduced and confirmed by Fourier-transform infrared spectroscopy and energy dispersive spectrometer. The thermoresponsive properties of nanofibers were investigated by contact angle (CA) measurements. The release behaviors of NIF from the PNIPAAm/PAMPS nanofibers were observed by SEM and demonstrated by UV-vis spectroscopy. It was found that uniform fibers of NIF and PNIPAAm/PAMPS could be fabricated without particles on the surface. The release of NIF from nanofibers could be controlled effectively by the changes of hydrogen bonds between PNIPAAm/PAMPS and NIF, and by adjusting temperatures of the thermoresponsive nanofibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.