Hybrid rigid-soft electronic system combines the biocompatibility of stretchable electronics and the computing capacity of silicon-based chips, which has a chance to realize a comprehensive stretchable electronic system with perception, control, and algorithm in near future. However, a reliable rigid-soft interconnection interface is urgently required to ensure both the conductivity and stretchability under a large strain. To settle this demand, this paper proposes a graded Mxene-doped liquid metal (LM) method to achieve a stable solid−liquid composite interconnect (SLCI) between the rigid chip and stretchable interconnect lines. To overcome the surface tension of LM, a high-conductive Mxene is doped for the balance between adhesion and liquidity of LM. And the high-concentration doping could prevent the contact failure with chip pins, while the low-concentration doping tends to maintain the stretchability. Based on this dosage-graded interface structure, the solid light-emitting diode (LED) and other devices integrated into the stretchable hybrid electronic system could achieve an excellent conductivity insensitive to the exerted tensile strain. In addition, the hybrid electronic system is demonstrated for skin-mounted and tire-mounted temperature-test applications under the tensile strain up to 100%. This Mxene-doped LM method aims to obtain a robust interface between rigid components and flexible interconnects by attenuating the inherent Young's modulus mismatch between rigid and flexible systems and makes it a promising candidate for effective interconnection between solid electronics and soft electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.