Process mining aims to transform event data recorded in information systems into knowledge of an organisation's business processes. The results of process mining analysis can be used to improve process performance or compliance to rules and regulations. However, applying process mining in practice is not trivial. In this paper we introduce PM 2 , a methodology to guide the execution of process mining projects. We successfully applied PM 2 during a case study within IBM, a multinational technology corporation, where we identified potential process improvements for one of their purchasing processes.
In process mining, precision measures are used to quantify how much a process model overapproximates the behavior seen in an event log. Although several measures have been proposed throughout the years, no research has been done to validate whether these measures achieve the intended aim of quantifying over-approximation in a consistent way for all models and logs. This paper fills this gap by postulating a number of axioms for quantifying precision consistently for any log and any model. Further, we show through counter-examples that none of the existing measures consistently quantifies precision.
The omnipresence of using Enterprise Resource Planning (ERP) systems to support business processes has enabled recording a great amount of (relational) data which contains information about the behaviors of these processes. Various process mining techniques have been proposed to analyze recorded information about process executions. However, classic process mining techniques generally require a linear event log as input and not a multi-dimensional relational database used by ERP systems. Much research has been conducted into converting a relational data source into an event log. Most conversion approaches found in literature usually assume a clear notion of a case and a unique case identifier in an isolated process. This assumption does not hold in ERP systems where processes comprise the life-cycles of various interrelated data objects, instead of a single process. In this paper, a new semi-automatic approach is presented to discover from the plain database of an ERP system the various objects supporting the system. More precisely, we identify an artifact-centric process model describing the system's objects, their life-cycles, and detailed information about how the various objects synchronize along their life-cycles, called interactions. In addition, our artifact-centric approach helps to eliminate ambiguous dependencies in discovered models caused by the data divergence and convergence problems and to identify the exact "abnormal flows". The presented approach is implemented and evaluated on two processes of ERP systems through case studies.
Abstract. Conformance checking is becoming more important for the analysis of business processes. While the diagnosed results of conformance checking techniques are used in diverse context such as enabling auditing and performance analysis, the quality and reliability of the conformance checking techniques themselves have not been analyzed rigorously. As the existing conformance checking techniques heavily rely on the total ordering of events, their diagnostics are unreliable and often even misleading when the timestamps of events are coarse or incorrect. This paper presents an approach to incorporate flexibility, uncertainty, concurrency and explicit orderings between events in the input as well as in the output of conformance checking using partially ordered traces and partially ordered alignments, respectively. The paper also illustrates various ways to acquire partially ordered traces from existing logs. In addition, a quantitative-based quality metric is introduced to objectively compare the results of conformance checking. The approach is implemented in ProM plugins and has been evaluated using artificial logs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.