Automatic detection of surface defects in electronic panels is receiving increasing attention in the quality control of products. The surface defect detection of electronic panels is different from other target detection scenarios and is a meaningful and challenging problem. Its main manifestation is that surface defects of electronic panels usually exhibit extreme irregularity and small target characteristics, which bring great difficulties to the task of surface defect target detection including feature extraction and so on. The traditional methods can only detect a very small number of defect classes under specific detection conditions. And due to the weak robustness of these methods, they cannot be applied in real production scenarios on a large scale. Based on this, this paper applies the target detection technique under deep learning to the surface defect detection scenario of electronic panels for the first time. At the same time, in order to make the designed target detection network applicable to the electronic panel surface defect detection scenario and to enhance the interpretability of the designed target detection network in terms of computer mechanism. We design a deformable convolution module with a convolutional self-attentive module to learn the offset and a dual detection head incorporating the SE (Squeeze-and-Excitation) mechanism for the irregular characteristics of electronic panel surface defects and the small target characteristics, respectively. Finally, we carried out a series of experiments on our own electronic panel defect data set, including comparison with the most advanced target detection algorithms and a series of ablation experiments against our proposed method. The final experimental results prove that our method not only has better interpretability, but also has better metric performance, in which the map_0.5 metric reaches 78.257%, which is an increase of 13.506 percentage points over YOLOV5 and 33.457 percentage points higher than Retinanet. The results prove the proposed method is effective.
During the production of electronic panels, surface defects will inevitably appear. How to quickly and accurately detect these defects is very important to improve product quality. However, some problems such as high cost and low accuracy are still prominent when existing manual detection and traditional techniques are used to solve such problems. Therefore, more and more computer vision techniques are proposed to solve such problems, but the current application of deep learning-based object detection networks for surface defect detection of electronic panels is in a gap. The analysis found that there are two main reasons for this phenomenon. On the one hand, the surface defects of electronic panels have their unique characteristics such as multi-scale and irregular shape, and the current object detection networks cannot effectively solve these problems. On the other hand, the regression and classification tasks coupled in the current computational mechanism of each network are commonly found to cause the problem of conflict between them, which makes it more difficult to adapt these network models to the detection tasks in this scenario. Based on this, we design a supervised object detection network for electronic panel surface defect detection scenario for the first time. The computational mechanism of this network includes a prediction box generation strategy based on the double branch structure and a detection head design strategy that decouples the regression task from the classification task. In addition, we validated the designed network and the proposed method on our own collected dataset of surface defects in electronic panels. The final results of the comparative and ablation experiments show that our proposed method achieves an average accuracy of 78.897% for 64 surface defect categories, proving that its application to electronic panel surface defect detection scenarios can achieve better results.
No abstract
At present, there are some problems in underwater low light image, such as low contrast, blurred details, color distortion. In the process of low illumination image enhancement, there are often problems such as artifacts, loss of edge details and noise amplification in the enhanced image. In this paper, we propose an underwater low-light enhancement algorithm based on U-shaped generative adversarial network, combined with bright channel prior and attention mechanism, to address the problems. For the problems of uneven edges and loss of details that occurred in traditional enhanced images, we propose a two-channel fusion technique for the input channel. Aiming at the problems of brightness, texture and color distortion in enhanced images, we propose a feature extraction technique based on the attention mechanism. For the problems of noise in enhanced output images, we propose a multi-loss function to constrain the network. The method has a wide range of applications in underwater scenes with large depth. This method can be used for target detection or biological species identification in underwater low light environment. Through the enhancement experiment of underwater low light image, the proposed method effectively solves the problems of low contrast, blurred details, color distortion, etc. of underwater low light image. Finally, we performed extensive comparison experiments and completed ablation experiments on the proposed method. The experimental results show that the proposed method is optimal in human visual experience and underwater image quality evaluation index.
The prediction of the maturity date of leafy greens in a planting environment is an essential research direction of precision agriculture. Real-time detection of crop growth status and prediction of its maturity for harvesting is of great significance for improving the management of greenhouse crops and improving the quality and efficiency of the greenhouse planting industry. The development of image processing technology provides great help for real-time monitoring of crop growth. However, image processing technology can only obtain the representation information of leafy greens, and it is difficult to describe the causal mechanism of environmental factors affecting crop growth. Therefore, a framework combining an image processing model and a crop growth model based on causal inference was proposed to predict the maturity of leafy greens. In this paper, a deep convolutional neural network was used to classify the growth stages of leafy greens. Then, since some environmental factors have causal effects on the growth rate of leafy greens, the causal effects of various environmental factors on the growth of leafy greens are obtained according to the data recorded by environmental sensors in the greenhouse, and the prediction results of the maturity of leafy greens in the study area are obtained by combining image data. The experiments showed that the root mean square error (RMSE) was 2.49 days, which demonstrated that the method had substantial feasibility in predicting the maturity for harvesting and effectively solved the limitations of poor timeliness of prediction. This model has great application potential in predicting crop maturity in greenhouses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.