Polymerization of glycinamide-conjugated monomer alone in concentrated aqueous solution enables facile formation of a mechanically strong and a highly stable supramolecular polymer (SP) hydrogel because of the cooperatively hydrogen-bonded crosslinking and strengthening effect from dual amide motifs. This SP hydrogel exhibits thermoplastic processability, injectability, and self-reparability because of the dynamic destruction and reconstruction of hydrogen bonds in response to temperature change.
The time-dependent density functional theory (TDDFT) method has been carried out to investigate the hydrogen-bonding dynamics of methyl acetate ( CH 3 CO 2 CH 3) in hydrogen-donating water solvent. The ground-state geometry optimizations, electronic transition energies and corresponding oscillation strengths of the low-lying electronically-excited states for the isolated CH 3 CO 2 CH 3 and H2O monomers, the hydrogen-bonded CH3CO2CH3-(H2O)1, 2 complexes have been calculated using DFT and TDDFT methods respectively. One intermolecular hydrogen bond C=O⋯H–O is formed between CH3CO2CH3 and one water molecule in CH3CO2CH3-H2O dimer. Meanwhile, in CH3CO2CH3-(H2O)2 trimer, two intermolecular hydrogen bonds C=O⋯H–O are formed between CH3CO2CH3 and two water molecules. By theoretically monitoring the excitation energy changes among the CH3CO2CH3 monomer, the CH3CO2CH3-H2O dimer, and the CH3CO2CH3-(H2O)2 trimer, we have demonstrated interestingly that in some electronically-excited states, the intermolecular hydrogen bonds are strengthened inducing electronic spectral redshifts, while in others weakened with electronic spectral blueshifts. The phenomenon that hydrogen bonds are strengthened in some electronic states while weakened in others can arouse further probe into CH3CO2CH3-(H2O)1, 2 complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.