Skeletal muscle injury is a common disease accompanied by inflammation, and its treatment still faces many challenges. The local inflammatory microenvironment can be modulated by a novel ROS-scavenging hydrogel (Gel) we constructed. And MSCs could differentiate into myoblasts and contribute to muscle tissue homeostasis and regeneration. Here, Gel loaded with mesenchymal stem cells (MSCs) (Gel@MSCs) was developed for repairing the injured skeletal muscle. Results showed that the Gel improved the survivability and enhanced the proliferation of MSCs (≈two-fold), and the Gel@MSCs inhibited the local inflammatory responses as it promoted polarization of M2 macrophages (increased from 5% to 17%), the mediator of the production of anti-inflammatory factors. Western blotting and qPCR revealed the Gel promoted the expression of proteins (≈two-fold) and genes (≈two to six-fold) related to myogenesis in MSCs. Histological assessment indicated that the Gel or MSCs promoted regeneration of skeletal muscle, and the efficacy was more significant at Gel@MSCs than MSCs alone. Finally, behavioral experiments confirmed that Gel@MSCs improved the motor function of injured mice. In short, the Gel@MSCs system we constructed presented a positive effect on reducing skeletal muscle damage and promoted skeletal muscle regeneration, which might be a novel treatment for such injuries.
Rheumatoid
arthritis (RA) is a systemic autoimmune disease with
clinical manifestations including joint cartilage, synovitis, and
bone damage. Here we developed an injectable erythrocyte gel loaded
with Bulleyaconitine A (BLA) for the treatment of RA and demonstrated
its anti-inflammatory effects in vivo and in vitro. In vitro experiments showed that
BLA could effectively down-regulate the expression of pro-inflammatory
factor in activated macrophages through the nuclear factor-κB
(NF-κB) pathway. In vivo experiments have shown
that the injection of BLA@RBCs in the inflammatory joints of CIA mice
increases the local concentration of BLA in a long time. Improved
therapeutic outcomes and reduced toxicity of BLA are demonstrated
in our work. Together, the developed BLA@RBCs drug delivery system
provides an alternative strategy to treat RA joints and shows high
potential in clinical RA treatment.
Whether the DD genotype of the angiotensin-I converting enzyme (ACE) I/D variation contributes to end-stage renal disease (ESRD) risk in type 2 diabetes mellitus (T2DM) remains controversial. Differences in study design, case and control definition, sample size and ethnicity may contribute to the discrepancies reported in association studies. We performed a case-control study to evaluate the association of the ACE I/D variation with ESRD risk in Chinese patients with T2DM receiving hemodialysis and analyzed the genotype-phenotype interaction. Unrelated Chinese patients (n = 432) were classified into the non-diabetic nephropathy (DN) control group (n = 222, duration of diabetes >10 years, no signs of renal involvement) and the DN-ESRD group (n = 210; ESRD due to T2DM, receiving hemodialysis). Polymerase chain reaction was used to genotype ACE I/D for all 432 subjects. The frequencies of the ID + DD genotypes were higher in the DN-ESRD group than non-DN control group (65.2 vs. 50.9 %; adjusted OR 1.98 (95 % CI, 1.31-3.00; P = 0.001). In the DN-ESRD group, the DD genotypic subgroup had significantly elevated HbA1c and diastolic blood pressure (DBP) compared to the II subgroup (both P < 0.05). The DD genotype of the ACE I/D variation may be associated with more elevated blood pressure and HbA1c, and therefore may predict the development, progression and severity of DN-ESRD in Chinese patients with T2DM undergoing hemodialysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.