Somatic cell reprogramming is accompanied by changes in lipid metabolism. While attempting to dissect the molecular mechanisms of the lipid metabolic switch during reprogramming, we found that overexpression of sterol regulatory element binding protein-1 (Srebp-1), a transcriptional factor required for lipid homeostasis, enhances reprogramming efficiency, while knockdown or pharmaceutical inhibition of Srebp-1 is inhibitory. Srebp-1 overexpression blocks the formation of partially reprogrammed cells, and functions in the early phase of reprogramming. Furthermore, Srebp-1 functions in nucleus and depends on its transcriptional activity but not its ability to bind the E-box motif and regulation of canonical targets. Mechanistically, Srebp-1 interacts with c-Myc, facilitates its binding to downstream pluripotent targets, strengthens the function of c-Myc in enhancing other Yamanaka factors' binding, and thereby promotes the expression of pluripotent genes. These results elucidate a novel role for Srebp-1 in somatic cell reprogramming and provide insights into understanding the metabolic switch during reprogramming. STEM CELLS 2016;34:83-92
SIGNIFICANCE STATEMENTOur manuscript clearly demonstrates that Srebp-1 promotes reprogramming by interacting with c-Myc, dependent on its nucleus translocation but not E-box essential for adipocyte differentiation. This is the first report of lipid metabolic genes in reprogramming with a concise mechanism, which has the new conceptual development.
Reprogramming of somatic cells to induced pluripotent stem cells rewrites the code of cell fate at the chromatin level. Yet, little is known about this process physically. Here, we describe a fluorescence recovery after photobleaching method to assess the dynamics of heterochromatin/euchromatin and show significant heterochromatin loosening at the initial stage of reprogramming. We identify growth arrest and DNA damage-inducible protein a (Gadd45a) as a chromatin relaxer in mouse embryonic fibroblasts, which also enhances somatic cell reprogramming efficiency. We show that residue glycine 39 (G39) in Gadd45a is essential for interacting with core histones, opening chromatin and enhancing reprogramming. We further demonstrate that Gadd45a destabilizes histone-DNA interactions and facilitates the binding of Yamanaka factors to their targets for activation. Our study provides a method to screen factors that impact on chromatin structure in live cells, and identifies Gadd45a as a chromatin relaxer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.