Combined measurements of middle ear transfer function and auditory brainstem response (ABR) in live guinea pigs with middle ear effusion (MEE) are reported in this paper. The MEE model was created by injecting saline into the middle ear cavity. Vibrations of the tympanic membrane (TM), the tip of the incus, and the round window membrane (RWM) were measured with a laser vibrometer at frequencies of 0.2-40 kHz when the middle ear fluid increased from 0 to 0.2 ml (i.e., full fill of the cavity). The click and pure tone ABRs were recorded as the middle ear fluid increased. Fluid introduction reduced mobility of the TM, incus and RWM mainly at high frequencies (f > 1 kHz). The magnitude of this reduction was related to the volume of fluid. The displacement transmission ratio of the TM to incus varied with frequency and fluid level. The volume displacement ratio of the oval window to round window was approximately 1.0 over most frequencies. Elevation of ABR thresholds and prolongation of ABR latencies were observed as fluid level increased. Reduction of TM displacement correlated well with elevation of ABR threshold at 0.5-8 kHz. Alterations in the ratio of ossicular displacements before and after fluid induction are consistent with fluid-induced changes in complex ossicular motions.
Recently we reported that middle ear pressure (MEP), middle ear effusion (MEE), and ossicular changes each contribute to the loss of tympanic membrane (TM) mobility in a guinea pig model of acute otitis media (AOM) induced by S. pneumoniae (Guan and Gan, 2013). However, it is not clear how those factors vary along the course of the disease and whether those effects are reproducible in different species. In this study, a chinchilla AOM model was produced by transbullar injection of Haemophilus influenzae. Mobility of the TM at the umbo was measured by laser vibrometry in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent relatively early and later phases of AOM. In each group, the vibration of the umbo was measured at three experimental stages: unopened, pressure-released, and effusion-removed ears. The effects of MEP and MEE and middle ear structural changes were quantified in each group by comparing the TM mobility at one stage with that of the previous stage. Our findings show that the factors affecting TM mobility do change with the disease time course. The MEP was the dominant contributor to reduction of TM mobility in 4D AOM ears, but showed little effect in 8D ears when MEE filled the tympanic cavity. MEE was the primary factor affecting TM mobility loss in 8D ears, but affected the 4D ears only at high frequencies. After the release of MEP and removal of MEE, residual loss of TM mobility was seen mainly at low frequencies in both 4D and 8D ears, and was associated with middle ear structural changes. Our findings establish that the factors contributing to TM mobility loss in the chinchilla ear were similar to those we reported previously for the guinea pig ears with AOM. Outcomes did not appear to differ between the two major bacterial species causing AOM in these animal models.
We report the fabrication and characterization of a prototype polyvinylidene fluoride polymer-based implantable microphone for detecting sound inside gerbil and human cochleae. With the current configuration and amplification, the signal-to-noise ratios were sufficiently high for normally occurring sound pressures and frequencies (ear canal pressures >50–60 dB SPL and 0.1–10 kHz), though 10 to 20 dB poorer than for some hearing aid microphones. These results demonstrate the feasibility of the prototype devices as implantable microphones for the development of totally implantable cochlear implants. For patients, this will improve sound reception by utilizing the outer ear and will improve the use of cochlear implants.
Acute otitis media (AOM) is a rapid infection of middle ear due to bacterial or viral invasion. The infection commonly leads to negative pressure and purulent effusion in the middle ear. To identify how these changes affect tympanic membrane (TM) mobility or sound transmission through the middle ear, we hypothesize that pressure, effusion, and structural changes of the middle ear are the main mechanisms of conductive hearing loss in AOM. To test the hypothesis, a guinea pig AOM model was created by injection of Streptococcus pneumoniae. Three days post inoculation, vibration of the TM at umbo in response to input sound in the ear canal was measured at three experimental stages: intact, pressure-released, and effusion-drained AOM ears. The vibration of the incus tip was also measured after the effusion was removed. Results demonstrate that displacement of the TM increased mainly at low frequencies when pressure was released. As the effusion was removed, the TM mobility increased further but did not reach the level of the normal ear at low frequencies. This was caused by middle ear structural changes or adhesions on ossicles in AOM. The structural changes also affected movement of the incus at low and high frequencies. The results provide new evidence for understanding the mechanism of conductive hearing loss in AOM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.