Cascade biocatalysis via intracellular epoxidation and hydrolysis was developed as a green and efficient method for enantioselective dihydroxylation of aryl olefins to prepare chiral vicinal diols in high ee and high yield. Escherichia coli (SSP1) coexpressing styrene monooxygenase (SMO) and epoxide hydrolase SpEH was developed as a simple and efficient biocatalyst for S-enantioselective dihydroxylation of terminal aryl olefins 1a−15a to give (S)-vicinal diols 1c−15c in high ee (97.5−98.6% for 10 diols; 92.2−93.9% for 3 diols) and high yield (91−99% for 6 diols; 86−88% for 2 diols; 67% for 3 diols). Combining SMO and epoxide hydrolase StEH showing complementary regioselectivity to SpEH as a biocatalyst for the cascade biocatalysis gave rise to R-enantioselective dihydroxylation of aryl olefins, being the first example of this kind of reversing the overall enantioselectivity of cascade biocatalysis. E. coli (SST1) coexpressing SMO and StEH was also engineered as a green and efficient biocatalyst for R-dihydroxylation of terminal aryl olefins 1a−15a to give (R)-vicinal diols 1c−15c in high ee (94.2−98.2% for 7 diols; 84.2−89.9% for 6 diols) and high yield (90−99% for 6 diols; 85−89% for 5 diols; 65% for 1 diol). E. coli (SSP1) and E. coli (SST1) catalyzed the trans-dihydroxylation of trans-aryl olefin 16a and cis-aryl olefin 17a with excellent and complementary stereoselectivity, giving each of the four stereoisomers of 1-phenyl-1,2-propanediol 16c in high ee and de, respectively. Both strains catalyzed the trans-dihydroxylation of aryl cyclic olefins 18a and 19a to afford the same trans-cyclic diols (1R,2R)-18c and (1R,2R)-19c, respectively, in excellent ee and de. This type of cascade biocatalysis provides a tool that is complementary to Sharpless dihydroxylation, accepting cis-alkene and offering enantioselective trans-dihydroxylation.
Recently we reported that middle ear pressure (MEP), middle ear effusion (MEE), and ossicular changes each contribute to the loss of tympanic membrane (TM) mobility in a guinea pig model of acute otitis media (AOM) induced by S. pneumoniae (Guan and Gan, 2013). However, it is not clear how those factors vary along the course of the disease and whether those effects are reproducible in different species. In this study, a chinchilla AOM model was produced by transbullar injection of Haemophilus influenzae. Mobility of the TM at the umbo was measured by laser vibrometry in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent relatively early and later phases of AOM. In each group, the vibration of the umbo was measured at three experimental stages: unopened, pressure-released, and effusion-removed ears. The effects of MEP and MEE and middle ear structural changes were quantified in each group by comparing the TM mobility at one stage with that of the previous stage. Our findings show that the factors affecting TM mobility do change with the disease time course. The MEP was the dominant contributor to reduction of TM mobility in 4D AOM ears, but showed little effect in 8D ears when MEE filled the tympanic cavity. MEE was the primary factor affecting TM mobility loss in 8D ears, but affected the 4D ears only at high frequencies. After the release of MEP and removal of MEE, residual loss of TM mobility was seen mainly at low frequencies in both 4D and 8D ears, and was associated with middle ear structural changes. Our findings establish that the factors contributing to TM mobility loss in the chinchilla ear were similar to those we reported previously for the guinea pig ears with AOM. Outcomes did not appear to differ between the two major bacterial species causing AOM in these animal models.
Halohydrin dehalogenases are usually recognized as strict b-position regioselective enzymes in the nucleophile-mediated ring-opening of epoxides. Here we found the HheG from Ilumatobacter coccineus exhibited excellent a-position regioselectivity in the azide-mediated ring-opening of styrene oxide derivatives 1a-1k, producing the corresponding 2-azido-2-aryl-1-ols 2a-2k with the yields up to 96%.Scheme 1 HHDH-catalyzed a-position and b-position regioselective ring-opening of epoxides with azide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.