The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.
In the interest of obtaining an effective bearing degradation feature from complex, nonlinear, and nonstationary vibration signals, a new analytical methodology based on local characteristic-scale decomposition (LCD) and relative entropy theory is proposed. On the one hand, LCD is a new and relatively excellent time-frequency analysis method to analyze practical vibration signals polluted by noise. On the other hand, relative entropy theory is a good way to characterize different degradation states by calculating the probability distribution difference between the degradation signals and the normal signal. Combining the above two theories, two new degradation features named LRNE and LRQE are extracted to indicate the bearing degradation trend from normal state to even failure state. The noise resistance ability and extensive applicability of both the features are verified by simulation signal. For further analysis of experimental vibration signals, the two features have a satisfying performance to characterize different bearing degradation states. With the help of gray relational analysis and fuzzy C-means clustering, the proposed two characteristics can identify different bearing degradation states of inner ring fault mode with high accuracy. In the end, the two features are applied to doing bearing failure analysis with the full-life bearing data. The results show that the LRNE and LRQE are sensitive to bearing degradation trend in the whole life of bearing.
The performance of hydraulic pump will directly affect the normal work of the entire hydraulic system, so it is essential for its condition monitoring and fault prediction. It collects vibration signal and pressure signal for hydraulic pump which degenerates from the normal state to loose slipper state. It uses wavelet packet to decompose energy of frequency area in order to get fault feature vectors and builds support vector machine prediction model for feature vectors, then predicts possible fault by D-S evidence theory. The experiment results show that the method can effectively predict fault for hydraulic pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.