Medical image analysis is performed by analyzing images obtained by medical imaging systems to solve clinical problems. The purpose is to extract effective information and improve the level of clinical diagnosis. In recent years, automatic segmentation based on deep
learning (DL) methods has been widely used, where a neural network can automatically learn image features, which is in sharp contrast with the traditional manual learning method. U-net is one of the most important semantic segmentation frameworks for a convolutional neural network (CNN). It
is widely used in the medical image analysis domain for lesion segmentation, anatomical segmentation, and classification. The advantage of this network framework is that it can not only accurately segment the desired feature target and effectively process and objectively evaluate medical images
but also help to improve accuracy in the diagnosis by medical images. Therefore, this article presents a literature review of medical image segmentation based on U-net, focusing on the successful segmentation experience of U-net for different lesion regions in six medical imaging systems.
Along with the latest advances in DL, this article introduces the method of combining the original U-net architecture with deep learning and a method for improving the U-net network.
Fluorescence molecular tomography (FMT) is an attractive imaging tool for quantitatively and three-dimensionally resolving fluorophore distributions in small animals, but it suffers from low spatial resolution due to its inherent ill-posed nature. Structural priors obtained from a secondary modality system such as x-ray computed tomography or magnetic resonance imaging can help to improve FMT reconstruction results. However, challenge remains in how to fully take advantage of the structural priors while effectively avoid undesirable influence caused by an immoderate usage. In this paper, we propose a new method to resolve the FMT inverse problem based on maximum a posteriori (MAP) estimation with structural priors (MAP-SP) in a Bayesian framework. Instead of imposing the structural priors directly on the reconstruction results, the MAP-SP method utilizes them to constrain the unknown hyperparameters of the prior information model which is essential for the Bayesian framework. Then, a low dimensional inverse problem and an alternating optimization scheme are used to automatically calculate the unknown hyperparameters, which make the FMT reconstruction process self-adaptive. Simulation and phantom results show that the proposed MAP-SP method can effectively make use of the structural priors and leads to improvements in reconstruction quality as compared with traditional regularization methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.