or X.C.M. (xcma@iphy.ac.cn).Searching for superconducting materials with high transition temperature (T C ) is one of the most exciting and challenging fields in physics and materials science.Although superconductivity has been discovered for more than 100 years, the copper oxides are so far the only materials with T C above 77 K, the liquid nitrogen boiling point 1,2 . Here we report an interface engineering method for dramatically raising the T C of superconducting films. We find that one unit-cell (UC) thick films of FeSe grown on SrTiO 3 (STO) substrates by molecular beam epitaxy (MBE) show signatures of superconducting transition above 50 K by transport measurement. A superconducting gap as large as 20 meV of the 1 UC films observed by scanning tunneling microcopy (STM) suggests that the superconductivity could occur above 77 K. The occurrence of superconductivity is further supported by the presence of superconducting vortices under magnetic field. Our work not only demonstrates a powerful way for finding new superconductors and for raising T C , but also provides a well-defined platform for systematic study of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.
Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu-and Fe-based high temperature superconductors.In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO 3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (T c ) at 65±5 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-T c , make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.
We report direct imaging of standing waves of the nontrivial surface states of topological insulator Bi2Te3 using a scanning tunneling microscope. The interference fringes are caused by the scattering of the topological states off Ag impurities and step edges on the Bi2Te3(111) surface. By studying the voltage-dependent standing wave patterns, we determine the energy dispersion E(k), which confirms the Dirac cone structure of the topological states. We further show that, very different from the conventional surface states, backscattering of the topological states by nonmagnetic impurities is completely suppressed. The absence of backscattering is a spectacular manifestation of the time-reversal symmetry, which offers a direct proof of the topological nature of the surface states.
Theoretical studies predicted that doping graphene with nitrogen can tailor its electronic properties and chemical reactivity. However, experimental investigations are still limited because of the lack of synthesis techniques that can deliver a reasonable quantity. We develop here a novel method for one-pot direct synthesis of N-doped graphene via the reaction of tetrachloromethane with lithium nitride under mild conditions, which renders fabrication in gram scale. The distinct electronic structure perturbation induced by the incorporation of nitrogen in the graphene network is observed for the first time by scanning tunnelling microscopy. The nitrogen content varies in the range of 4.5−16.4%, which allows further modulation of the properties. The enhanced catalytic activity is demonstrated in a fuel cell cathode oxygen reduction reaction with respect to pure graphene and commercial carbon black XC-72. The resulting N-doped materials are expected to broaden the already widely explored potential applications for graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.