Due to the deformation caused by residual stress in the welding process, welded components need treatment to reduce welding distortion. In this paper, several different times of flame-heating and water-cooling treatment were subjected to the friction stir welding joints of 15mm thick 7N01P-T4 aluminum alloy sheets to study the microstructure variation of friction stir welding joints of 7N01P-T4 aluminum alloy, and to analyze the effect on micro-hardness, tensile and fracture mechanical properties. This investigation will be helpful to optimize treatment methods and provide instruction on industrial production.
Pre-creep experiments were performed on chromium-nickel (Cr-Ni) stainless steel in the early stage of creep. The temperature was held for 500–2000 h under high-temperature load conditions (873 K and 150 MPa), and various analysis methods, including optical microscopy, electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and X-ray diffraction, were used to determine the pattern of dislocation evolution under different temperature-holding times. The results showed that the slip bands intersected at the initial stage of pre-creep, and a quadrilateral network structure was formed by the dislocation pinning. As the temperature-holding time increased, the dislocation network began to climb to form dislocation walls, dislocation cells, and other substructures. At 2000 h, the grain boundaries widened considerably; creep holes were found at the grain boundaries; and dislocation pairs with oscillating contrast occurred, which indicates nitrogen diffusion. The yield and tensile strengths of the Cr-Ni steel samples subjected to pre-creep at holding times of above 1000 h decreased after they were subjected to room-temperature tensile tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.