Considering the degradation effect of corrosion damage on fatigue behavior of aero aluminum alloy, the present thesis made a research on corrosion fatigue crack growth rate. Taking into account the effect of load frequency on fatigue crack growth, a concept of corrosion fatigue frequency factor is proposed. Based on the fact that low frequency will lead to high corrosion fatigue crack growth rate, and frequency higher enough will make little difference between corrosion fatigue and pure mechanical fatigue behavior, an exponential expression of corrosion fatigue frequency factor is proposed. The crack growth rate prediction from proposed formula is proved to be in good agreement with experimental results for steadily extended corrosion fatigue crack.
The present thesis made a research to evaluate fatigue crack growth rate subjecting to corrosion and cyclic fatigue loading, with the effect of load frequency on fatigue taken into account. A modified Paris’ law based model is proposed. An exponential modified expression of proportional parameter account for fatigue frequency is proposed based on the obvious fact that low frequency loading will lead to long fatigue life, thus prolong interaction time between corrosion media and specimen which will favor for crack propagation. Loading frequency higher enough will shorten that time, thus influence of corrosion will be significantly weaken, close to pure mechanical fatigue. Crack growth rate prediction from proposed formula is proved to be in good agreement with experimental results for steadily extended corrosion fatigue crack.
Corrosion fatigue is a form of degradation subjected to combined damage of mechanical stress and corrosive medium, which is an issue in aircraft industry. Experimental investigations on prior corrosion fatigue cracking behavior of LY12CZ were conducted with scanning electron microscope (SEM). Results indicate corrosion damage is important for the fatigue small cracking behavior of LY12CZ aluminum alloy. The effect of corrosion pit on fatigue crack can be characterized by the depth of corrosion pit. Based on small crack, another way to evaluate crack growth rate for AALY12CZ is proposed.
Experimental investigations of fatigue cracking behavior of LC9 aluminum alloy (AA LC9) subjected to elevated temperature were conducted with scanning electron microscope (SEM). Results indicate elevated temperature is important for the fatigue crack growth of AA LC9. Based on small crack growth, crack growth rate for AA LC9 is characterized.
With the increase of the service time of shipborne aircraft, the overlarge impact load can affect the life of the hydraulic system accessories. At the same time, the vibration and the corrosion of the ser water will also affect negatively the accessories’ life. The accessories are the important composition of the hydraulic system. Therefore, it is necessary to study the possible faults and their rules. This paper aims to establish the suitable model to predict the faults by use of the FEM and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.