To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.