An increasing number of automobiles have led to a serious shortage of parking spaces and a serious imbalance of parking supply and demand. The best way to solve these problems is to achieve the reasonable planning and classify management of car parks, guide the intelligent parking, and then promote its marketization and industrialization. Therefore, we aim to adopt clustering method to classify car parks. Owing to the time series characteristics of car park data, a time series clustering framework, including preprocessing, distance measurement, clustering and evaluation, is first developed for classifying car parks. Then, in view of the randomness of existing clustering models, a new time series clustering model based on dynamic time warping (DTW) is proposed, which contains distance radius calculation, obtaining density of the neighbor area, k centers initialization, and clustering. Finally, some UCR datasets and data of 27 car parks are employed to evaluate the performance of the models and results show that the proposed model performs obviously better results than those clustering models based on Euclidean distance (ED) and traditional clustering models based on DTW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.