Anodic oxidation is a promising surface modification technique for the manufacture of SiC wafers owing to its high oxidation rate. It is also possible to fabricate porous SiC by anodic oxidation and etching owing to the material properties of SiC. In this study, the anodic oxidation of a 4H-SiC(0001) surface was investigated by performing repeated anodic oxidation and hydrofluoric acid etching on a 4H-SiC(0001) surface, during which the formation of porous SiC was observed and studied. Anodic oxidation is very effective for removing the surface damage formed by mechanical polishing, and the surface after removing the surface damage can be oxidized uniformly and has a higher oxidation rate than a surface newly finished by chemical mechanical polishing (CMP). We proposed a model based on the electrochemical impedance method to explain the difference in the oxidation between an as-CMP-finished surface and an oxidized/etched surface. Porous SiC was obtained in this study, which was due to the anisotropy of the SiC crystal. The structure of the porous SiC was significantly dependent on the etch pits generated at the beginning of anodic oxidation and can be controlled via anodic oxidation parameters. Anodic oxidation and hydrofluoric acid etching cannot remove porous SiC owing to the anisotropic oxidation of the SiC surface and the difficulty of anodizing SiC fibers. This study shows that anodic oxidation is a promising technique for the modification of SiC surfaces and the fabrication of porous SiC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.