Vitamin D deficiency is a severe worldwide health issue. Edible mushrooms are an excellent vitamin D2 source and have gained popularity worldwide as a nutritional food. The objective of this study was to investigate the conversion efficiency of ergosterol to vitamin D2 in Agaricus bisporus and Cordyceps militaris mushrooms under ultraviolet (UV) irradiation directly through dry powder or in ethanol suspension (1:20 g/mL, solid to liquid ratio). Several parameters of UV irradiation conditions such as the material form (dry powder or dry powder in ethanol suspension), exposure time (30, 60, or 120 min), wavelength type (UV-C, UV-B, or UV-A), wavelength combination (UV-C plus UV-B, UV-C plus UV-A, UV-B plus UV-A, or UV-C plus UV-B plus UV-A), and wavelength sequence (UV-C → UV-B, UV-C → UV-A, UV-B → UV-A, or UV-C → UV-B → UV-A), were optimized. Under the optimal UV irradiation conditions (dry powder in ethanol suspension irradiated with UV-C at 40 cm for 120 min), vitamin D2 concentrations increased from not detectable to 72 μg/g (dw) in the A. bisporus dry powder and 1104 μg/g (dw) (about 15-fold increase) in the ethanol suspension. After UV irradiation, the vitamin D2 concentration increased from undetectable to 57 μg/g (dw) in the C. militaris dry powder. In contrast, UV irradiation increased the concentration to 877 μg/g (dw) (about 15-fold higher) in the ethanol suspension. Comparison of the effect of various wavelength combinations showed that UV-C irradiation is more effective than UV-A or UV-B. Furthermore, when irradiated by UV-C at a 40 cm irradiation distance in the ethanol suspension, the increase in vitamin D2 in A. bisporus and C. militaris mushrooms was time- or dose-dependent. The conversion rate of vitamin D2 was low to undetectable under dry powder irradiation, but its ergosterol loss rate was higher than in ethanol suspension irradiation. The ergosterol loss rate in dry C. militaris mushrooms was higher than in the dry A. bisporus mushroom powder. Ultraviolet irradiation in ethanol suspension could greatly increase the vitamin D2 concentration than directly on the dry powder and thus make edible mushrooms more practical as a natural vitamin D source for consumers after entirely removing the ethanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.