Abstract. Jamming is a kind of Denial-of-Service (DoS) attack in which an adversary purposefully emits radio frequency signals to corrupt wireless transmissions. Thus, the communications among normal sensor nodes become difficult or even impossible. Although some research has been conducted on countering jamming attacks, few works considered jamming by insiders. Here, an attacker first compromises some legitimate sensor nodes to acquire the common cryptographic information of the sensor network and then jams the network through those compromised sensors. In this paper, as our initial effort, we propose a compromise-resilient anti-jamming scheme called split-pairing scheme to deal with single insider jamming problem in a one-hop network setting. In our solution, the physical communication channel of a sensor network is determined by the group key shared by all the sensor nodes. When insider jamming happens, the network will generate a new group key to be shared only by all non-compromised nodes. After that, the insider jammer is revoked and will be unable to predict the future communication channels used by non-compromised nodes. We implement and evaluate our solution using the Mica2 Mote platform and show it has low recovery latency and communication overhead, and it is a practical solution for resource constrained sensor networks under the single insider jamming attack.
Jamming is a kind of Denial-of-Service attack in which an adversary purposefully emits radio frequency signals to corrupt the wireless transmissions among normal nodes. Although some research has been conducted on countering jamming attacks, few works consider jamming attacks launched by insiders, where an attacker first compromises some legitimate sensor nodes to acquire the common cryptographic information of the sensor network and then jams the network through those compromised nodes. In this paper, we address the insider jamming problem in wireless sensor networks. In our proposed solutions, the physical communication channel of a sensor network is determined by the group key shared by all the sensor nodes. When insider jamming happens, the network will generate a new group key to be shared only by the noncompromised nodes. After that, the insider jammers are revoked and will not be able to predict the future communication channels used by the non-compromised nodes. Specifically, we propose two compromise-resilient antijamming schemes: the split-pairing scheme which deals with a single insider jammer, and the key-tree-based scheme which copes with multiple colluding insider jammers. We implement and evaluate the proposed solutions using Mica2 Motes. Experimental results show that our solutions have low recovery latency and low communication overhead, and hence they are suitable for resource constrained sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.