Infrared small target detection systems are an important part of space infrared imaging satellites. However, small infrared target detection is often affected by cirrus false alarm sources with similar grayscales. In this paper, an infrared cirrus detection method based on the tensor robust principal component analysis model (TRPCA) is proposed. The method treats multiple bands of remote sensing data as tensors, but classical tensor nuclear norms cannot represent the tensor rank well; therefore, we use tensor multi-mode expansion sum nuclear norm (TMESNN) to approximate the tensor rank better. First, a set of Landsat-8 data is transformed into a tensor model, and a TRPCA model is constructed by TMESNN and the 1 L norm. Then, this model is solved by Ket augments and the alternating direction method of multipliers (ADMM). Finally, Mallat wavelet transform is used to supplement information and remove clutter, and the final detection result is obtained by adaptive threshold segmentation. Compared with other optimizationbased methods, this method has better detection performance and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.