Homochiral metal-organic frameworks with fine-tuned pore sizes/walls and large surface areas are promising porous materials for enantioseparation considering the traditional zeolite molecular sieves have no chirality. Using enantiopure pyridyl-functionalized salen [(N-(4-Pyridylmethyl)-L-leucine·HBr)] as a starting material, we have prepared a noninterpenetrated three-dimensional homochiral metal organic framework {[ZnLBr]·H2O}n, which was further used as a chiral stationary phase for high-performance liquid chromatography to enantioseparate racemic drugs, showing excellent performances in enantioseparation of drugs. The metal-organic framework can be regarded as a novel molecular sieve-like material with a chiral separation function based on the relative sizes of the chiral channels and the resolved molecules.
Hydrogen sulfide (H2S) has been regarded as the third important gaseous signaling molecule involved in human physiological and pathological processes. Due to the high reactive and diffusible properties of H2S, real-time detection of H2S fluctuations in living biological specimens is crucial. Here, we present a Cu(II)-metalated 3D porous nanoscale metal-organic framework (nano-MOF) {CuL[AlOH]2}n (PAC; H6L = meso-tetrakis(4-carboxylphenyl)porphyrin) and successfully employ this nano-MOF as a novel heterogeneous fluorescence probe for H2S detection. As far as we know, nano-MOFs have never been used as selective fluorescence probes for H2S detection. On the basis of the advantages of nano-MOF materials, this biocompatible nano-MOF probe exhibits rapid response, excellent selectivity, and hypotoxicity in in situ detection of H2S and represents the most sensitive fluorescence probe for selective H2S detection under physiological pH. In addition, confocal imaging was achieved successfully in living cells.
Benefited from the optimized activity of active sites, adsorption energy and the proposed electron transfer property, the CoFe2O4 nanosheet with oxygen vacancies exhibited significantly enhanced water splitting catalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.