Background: Acute ischemic stroke (AIS) is a leading cause of disability and mortality worldwide. Prediction of penumbra existence after AIS is crucial for making decision on reperfusion therapy. Yet a fast, inexpensive, simple, and noninvasive predictive biomarker for the poststroke penumbra with clinical translational potential is still lacking. We aim to investigate whether the CircOGDH (circular RNA derived from oxoglutarate dehydrogenase) is a potential biomarker for penumbra in patients with AIS and its role in ischemic neuronal damage. Methods: CircOGDH was screened from penumbra of middle cerebral artery occlusion mice and was assessed in plasma of patients with AIS by quantitative polymerase chain reaction. Magnetic resonance imaging was used to examine the penumbra volumes. CircOGDH interacted with miR-5112 in primary cortical neurons was detected by fluorescence in situ hybridization, RNA immunoprecipitation, and luciferase reporter assay. ADV-mediated CircOGDH knockdown ameliorated neuronal apoptosis induced by COL4A4 (Gallus collagen, type VI, alpha VI) overexpression. Transmission electron microscope, nanoparticle tracking analysis, and Western blot were performed to confirm exosomes. Results: CircOGDH expression was dramatically and selectively upregulated in the penumbra tissue of middle cerebral artery occlusion mice and in the plasma of 45 patients with AIS showing a 54-fold enhancement versus noncerebrovascular disease controls. Partial regression analysis revealed that CircOGDH expression was positively correlated with the size of penumbra in patients with AIS. Sequestering of miR-5112 by CircOGDH enhanced COL4A4 expression to elevate neuron damage. Additionally, knockdown of CircOGDH significantly enhanced neuronal cell viability under ischemic conditions. Furthermore, the expression of CircOGDH in brain tissue was closely related to that in the serum of middle cerebral artery occlusion mice. Finally, we found that CircOGDH was highly expressed in plasma exosomes of patients with AIS compared with those in noncerebrovascular disease individuals. Conclusions: These results demonstrate that CircOGDH is a potential therapeutic target for regulating ischemia neuronal viability, and is enriched in neuron-derived exosomes in the peripheral blood, exhibiting a predictive biomarker of penumbra in patients with AIS.
Exosomes contribute to cell–cell communications. Emerging evidence has shown that microglial exosomes may play crucial role in regulation of neuronal functions under ischemic conditions. However, the underlying mechanisms of microglia-derived exosome biosynthesis are largely unknown. Herein, we reported that the microglial PDE1-B expression was progressively elevated in the peri-infarct region after focal middle cerebral artery occlusion. By an oxygen-glucose-deprivation (OGD) ischemic model in cells, we found that inhibition of PDE1-B by vinpocetine in the microglial cells promoted M2 and inhibited M1 phenotype. In addition, knockdown or inhibition of PDE1-B significantly enhanced the autophagic flux in BV2 cells, and vinpocetine-mediated suppression of M1 phenotype was dependent on autophagy in ischemic conditions. Co-culture of BV2 cells and neurons revealed that vinpocetine-treated BV2 cells alleviated OGD-induced neuronal damage, and treatment of BV2 cells with 3-MA abolished the observed effects of vinpocetine. We further demonstrated that ischemia and vinpocetine treatment significantly altered microglial exosome biogenesis and release, which could be taken up by recipient neurons and regulated neuronal damage. Finally, we showed that the isolated exosome per se from conditioned BV2 cells is sufficient to regulate cortical neuronal survival in vivo. Taken together, these results revealed a novel microglia-neuron interaction mediated by microglia-derived exosomes under ischemic conditions. Our findings further suggest that PDE1-B regulates autophagic flux and exosome biogenesis in microglia which plays a crucial role in neuronal survival under cerebral ischemic conditions.
BackgroundWe aimed to develop and validate a new nomogram for predicting the risk of intracranial hemorrhage (ICH) in patients with acute ischemic stroke (AIS) after intravenous thrombolysis (IVT).MethodsA retrospective study enrolled 553 patients with AIS treated with IVT. The patients were randomly divided into two cohorts: the training set (70%, n = 387) and the testing set (30%, n = 166). The factors in the predictive nomogram were filtered using multivariable logistic regression analysis. The performance of the nomogram was assessed based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA).ResultsAfter multivariable logistic regression analysis, certain factors, such as smoking, National Institutes of Health of Stroke Scale (NIHSS) score, blood urea nitrogen-to-creatinine ratio (BUN/Cr), and neutrophil-to-lymphocyte ratio (NLR), were found to be independent predictors of ICH and were used to construct a nomogram. The AUC-ROC values of the nomogram were 0.887 (95% CI: 0.842–0.933) and 0.776 (95% CI: 0.681–0.872) in the training and testing sets, respectively. The AUC-ROC of the nomogram was higher than that of the Multicenter Stroke Survey (MSS), Glucose, Race, Age, Sex, Systolic blood Pressure, and Severity of stroke (GRASPS), and stroke prognostication using age and NIH Stroke Scale-100 positive index (SPAN-100) scores for predicting ICH in both the training and testing sets (p < 0.05). The calibration plot demonstrated good agreement in both the training and testing sets. DCA indicated that the nomogram was clinically useful.ConclusionsThe new nomogram, which included smoking, NIHSS, BUN/Cr, and NLR as variables, had the potential for predicting the risk of ICH in patients with AIS after IVT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.