With the rapid growth of medical image data, it has become a current research hotspot that how to realize the large amounts of the real-time upload and storage of medical images with limited network bandwidth and storage space. However, currently, medical image compression technology cannot perform joint optimization of rate (the degree of compression) and distortion (reconstruction effect). Therefore, this study proposed a medical image compression algorithm based on a variational autoencoder. This algorithm takes rate and distortion as the common optimization goal and uses the residual network module to directly transmit information, which alleviates the contradiction between improving the degree of compression and optimizing the reconstruction effect. At the same time, the algorithm also reduces image loss in the medical image compression process by adding the residual network. The experimental results show that, compared with the traditional medical image compression algorithm and the deep learning compression algorithm, the algorithm in this study has smaller distortion, better reconstruction effect, and can obtain higher quality medical images at the same compression rate.
This paper proposes a regularized generalized orthogonal matching pursuit algorithm with dynamic compensation characteristics based on the application context of compressive sensing in shock wave signal testing. We add dynamic compensation denoising as a regularization condition to the reconstruction algorithm. The resonant noise is identified and suppressed according to the signal a priori characteristics, and the denoised signal is reconstructed directly from the original signal downsampling measurements. The signal-to-noise ratio of the output signal is improved while reducing the amount of data transmitted by the signal. The proposed algorithm’s applicability and internal parameter robustness are experimentally analyzed in the paper. We compare the proposed algorithm with similar compression-aware reconstruction and dynamic compensation algorithms under the shock tube test and measured shock wave signals. The results from the reconstruction signal-to-noise ratio and the number of measurements required for reconstruction verify the algorithm’s effectiveness in this paper.
At present, researchers have made great progress in the research of object detection, however, these studies mainly focus on the object detection of images under normal lighting, ignoring the target detection under low light. And images in the fields of automatic driving at night and surveillance are usually obtained in low-light environments. These images have problems such as poor brightness, low contrast, and obvious noise, which lead to a large amount of information loss in the image. And the performance of object detection in low light is reduced. In this paper, we propose a low-light image enhancement method based on multi-scale network fusion to solve the problems of images in low-light environments. Aiming at the problem that the effective information of low-light images is relatively small, we propose a preprocessing method for image nonlinear transformation and fusion, which improves the amount of available information in the light image. Then, in order to obtain a better enhancement effect, a multi-scale feature fusion method is proposed, which fuses features from different resolution levels in the network. The details of low-light areas in the image are improved, and the problem of feature loss caused by too deep network layers is solved. The experimental results show that our proposed method can achieve better enhancement effects on different datasets compared with the current mainstream methods. The average recall value of the object detection with our method is improved by 38.25%, which shows that our proposed method is effective and can promote the development of autonomous driving, monitoring, and other fields. INDEX TERMS image preprocessing;low illumination image enhancement; multi-branch network fusion
Overcomplete dictionaries occupy an essential position in the sparse representation of signals. The dictionary construction method typically represented by K singular value decomposition (KSVD) is widely used because of its concise and efficient features. In this paper, based on the background of transient signal detection, an adaptive sparse estimation KSVD (ASE-KSVD) dictionary training method is proposed to solve the redundant iteration problem caused by fixed sparsity in existing KSVD dictionary construction. The algorithm features an adaptive sparsity estimation strategy in the sparse coding stage, which adjusts the number of iterations required for dictionary training based on the pre-estimation of the sample signal characteristics. The aim is to decrease the number of solutions of the underdetermined system of equations, reduce the overfitting error under the finite sparsity condition, and improve overall training efficiency. We compare four similar algorithms under the speech signal and actual shock wave sensor network data conditions, respectively. The results show that the proposed algorithm has obvious performance advantages and can be applied to real-life scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.