Despite their crucial roles in health and climate concerns, the gas-particle partitioning of carbonyl compounds is poorly characterized in the ambient atmosphere. In this study, we investigate their partitioning by simultaneously measuring six carbonyl compounds (formaldehyde, acetaldehyde, acetone, propionaldehyde, glyoxal, and methylglyoxal) in the gas and particle phase at an urban site in Beijing. The field-derived partitioning coefficients ( K) are in the range of 10-10 m μg, and the corresponding effective Henry's law coefficients ( K) should be 10-10 M atm. The Pankow's absorptive partitioning theory and Henry's law both significantly underestimate concentrations of particle-phase carbonyl compounds (10-10 times and >10 times, respectively). The observed "salting-in" effects only partially explain the enhanced partitioning to particles, which is approximately 1 order of magnitude. The measured K values are higher at low relative humidity, and the overall effective vapor pressure of these carbonyl species are lower than their hydrates, indicating that carbonyl oligomers potentially formed in highly concentrated particle phase. The reaction kinetics of oligomer formation should be included if applying Henry's law to low-to-moderate relative humidity, and the high partitioning coefficients observed need to be proved by further field and laboratory studies. These findings provide deeper insights into the formation of carbonyl secondary organic aerosols in the ambient atmosphere.
Excess fat accumulation has been observed widely in farmed fish; therefore, efficient lipid-lowering factors have obtained high attention in the current fish nutrition studies. Dietary L-carnitine can increase fatty acid β-oxidation in mammals, but has produced contradictory results in different fish species. To date, the mechanisms of metabolic regulation of L-carnitine in fish have not been fully determined. The present study used zebrafish to investigate the systemic regulation of nutrient metabolism by dietary L-carnitine supplementation. L-carnitine significantly decreased the lipid content in liver and muscle, accompanied by increased concentrations of total and free carnitine in tissues. Meanwhile, L-carnitine enhanced mitochondrial β-oxidation activities and the expression of carnitine palmitoyltransferase 1 mRNA significantly, whereas it depressed the mRNA expression of adipogenesis-related genes. In addition, L-carnitine caused higher glycogen deposition in the fasting state, and increased and decreased the mRNA expressions of gluconeogenesis-related and glycolysis-related genes, respectively. L-carnitine also increased the hepatic expression of mTOR in the feeding state. Taken together, dietary L-carnitine supplementation decreased lipid deposition by increasing mitochondrial fatty acid β-oxidation, and is likely to promote protein synthesis. However, the L-carnitine-enhanced lipid catabolism would cause a decrease in glucose utilization. Therefore, L-carnitine has comprehensive effects on nutrient metabolism in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.