Deep neural models, in particular Transformer-based pre-trained language models, require a significant amount of data to train. This need for data tends to lead to problems when dealing with idiomatic multiword expressions (MWEs), which are inherently less frequent in natural text. As such, this work explores sample efficient methods of idiomaticity detection. In particular we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings, on the task of idiomaticity detection. In addition, to further explore generalisability, we focus on the identification of MWEs not present in the training data. Our experiments show that while these methods improve performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT. Regardless, we believe sample efficient methods for both identifying and representing potentially idiomatic MWEs are very encouraging and hold significant potential for future exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.