Sepsis is a systemic inflammatory disease causing life-threatening multi-organ dysfunction. Accumulating evidences suggest that two forms of programmed necrosis, necroptosis and pyroptosis triggered by the pathogen component lipopolysaccharide (LPS) and inflammatory cytokines, play important roles in the development of bacterial sepsis-induced shock and tissue injury. Sepsis-induced shock and tissue injury required receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) phosphorylation, caspase11 activation and gasdermin D (GSDMD) cleavage. However, the synergistic effect of necroptosis and pyroptosis in the pathological progress of sepsis remains elusive. In this study, we found that blockage of both necroptosis and pyroptosis (double deletion of Ripk3/Gsdmd or Mlkl/Gsdmd) resulted in accumulative protection against septic shock, systemic blood clotting and multi-organ injury in mice. Bone marrow transplantation confirmed that necroptosis and pyroptosis in both myeloid and nonmyeloid cells are indispensable in the progression of sepsis-induced multi-organ injury. Both RIPK3 and GSDMD signaling collaborated to amplify necroinflammation and tissue factor release in macrophages and endothelial cells, which led to tissue injury. Furthermore, cell death induced by inflammatory cytokines and high-mobility group box 1 could be prevented by double ablation of Ripk3/ Gsdmd or Mlkl/Gsdmd, suggesting that a positive feedback loop interconnecting RIPK3/MLKL and GSDMD machinery and inflammation facilitated sepsis progression. Collectively, our findings demonstrated that RIPK3-mediated necroptosis and GSDMD-mediated pyroptosis collaborated to amply inflammatory signaling and enhance tissue injury in the process of sepsis, which may shed new light on two potential targets of combined therapeutic interventions for this highly lethal disorder.
BackgroundSpecies living at high altitude are subject to strong selective pressures due to inhospitable environments (e.g., hypoxia, low temperature, high solar radiation, and lack of biological production), making these species valuable models for comparative analyses of local adaptation. Studies that have examined high-altitude adaptation have identified a vast array of rapidly evolving genes that characterize the dramatic phenotypic changes in high-altitude animals. However, how high-altitude environment shapes gene expression programs remains largely unknown.FindingsWe generated a total of 910 Gb of high-quality RNA-seq data for 180 samples derived from 6 tissues of 5 agriculturally important high-altitude vertebrates (Tibetan chicken, Tibetan pig, Tibetan sheep, Tibetan goat, and yak) and their cross-fertile relatives living in geographically neighboring low-altitude regions. Of these, ∼75% reads could be aligned to their respective reference genomes, and on average ∼60% of annotated protein coding genes in each organism showed FPKM expression values greater than 0.5. We observed a general concordance in topological relationships between the nucleotide alignments and gene expression–based trees. Tissue and species accounted for markedly more variance than altitude based on either the expression or the alternative splicing patterns. Cross-species clustering analyses showed a tissue-dominated pattern of gene expression and a species-dominated pattern for alternative splicing. We also identified numerous differentially expressed genes that could potentially be involved in phenotypic divergence shaped by high-altitude adaptation.ConclusionsThese data serve as a valuable resource for examining the convergence and divergence of gene expression changes between species as they adapt or acclimatize to high-altitude environments.
Background Prostate cancer (PCa) remains the second leading cause of deaths due to cancer in the United States in men. The aim of this study was to perform an integrative epigenetic analysis of prostate adenocarcinoma to explore the epigenetic abnormalities involved in the development and progression of prostate adenocarcinoma. The key DNA methylation-driven genes were also identified. Methods Methylation and RNA-seq data were downloaded for The Cancer Genome Atlas (TCGA). Methylation and gene expression data from TCGA were incorporated and analyzed using MethylMix package. Methylation data from the Gene Expression Omnibus (GEO) were assessed by R package limma to obtain differentially methylated genes. Pathway analysis was performed on genes identified by MethylMix criteria using ConsensusPathDB. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also applied for the identification of pathways in which DNA methylation-driven genes significantly enriched. The protein–protein interaction (PPI) network and module analysis in Cytoscape software were used to find the hub genes. Two methylation profile (GSE112047 and GSE76938) datasets were utilized to validate screened hub genes. Immunohistochemistry of these hub genes were evaluated by the Human Protein Atlas. Results A total of 553 samples in TCGA database, 32 samples in GSE112047 and 136 samples in GSE76938 were included in this study. There were a total of 266 differentially methylated genes were identified by MethylMix. Plus, a total of 369 differentially methylated genes and 594 differentially methylated genes were identified by the R package limma in GSE112047 and GSE76938, respectively. GO term enrichment analysis suggested that DNA methylation-driven genes significantly enriched in oxidation–reduction process, extracellular exosome, electron carrier activity, response to reactive oxygen species, and aldehyde dehydrogenase [NAD(P)+] activity. KEGG pathway analysis found DNA methylation-driven genes significantly enriched in five pathways including drug metabolism—cytochrome P450, phenylalanine metabolism, histidine metabolism, glutathione metabolism, and tyrosine metabolism. The validated hub genes were MAOB and RTP4. Conclusions Methylated hub genes, including MAOB and RTP4, can be regarded as novel biomarkers for accurate PCa diagnosis and treatment. Further studies are needed to draw more attention to the roles of these hub genes in the occurrence and development of PCa.
BackgroundMesenchymal stem cell (MSC) transplantation shows promise for treating transplant arteriosclerosis, at least partly via promoting endothelial regeneration. However, the efficacy and safety are still under investigation especially regarding recent findings that neointimal smooth muscle cells are derived from MSC-like cells. The high mobility group box 1 (HMGB1)/receptor for advanced glycation end-product (RAGE) axis is involved in regulating proliferation, migration, and differentiation of MSCs, and therefore it can be presumably applied to improve the outcome of cell therapy. The aim of the current study was to investigate this hypothesis.MethodsRat MSCs were treated with HMGB1 or modified with HMGB1 vectors to activate the HMGB1/RAGE axis. RAGE was targeted and inhibited by specific short hairpin RNA vectors. We assessed the capacity for cell proliferation, migration, and differentiation after vector transfection in vitro and in a rat model of transplant arteriosclerosis. The expression of CD31 and α-smooth muscle actin (αSMA) was determined to evaluate the differentiation of MSCs to endothelial cells and smooth muscle cells.ResultsExogenous HMGB1 treatment and transfection with HMGB1 vectors promoted MSC migration and vascular endothelial growth factor (VEGF)-induced differentiation to CD31+ cells while inhibiting their proliferation and platelet-derived growth factor (PDGF)-induced differentiation to αSMA+ cells. Such an effect was blocked by RAGE knockdown. HMGB1-modified cells preferably migrated to graft neointima and differentiated to CD31+ cells along with significant relief of transplant arteriosclerosis and inhibition of HMGB1 and RAGE expression in graft vessels. RAGE knockdown inhibited cell migration to graft vessels.ConclusionsHMGB1 stimulated MSCs to migrate and differentiate to endothelial cells via RAGE signaling, which we translated to successful application in cell therapy for transplant arteriosclerosis.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-0827-z) contains supplementary material, which is available to authorized users.
Growth performance and meat quality are important traits for the pig industry and consumers. Adipose tissue is the main site at which fat storage and fatty acid synthesis occur. Therefore, we combined high-throughput transcriptomic sequencing in adipose and muscle tissues with the quantification of corresponding phenotypic features using seven Chinese indigenous pig breeds and one Western commercial breed (Yorkshire). We obtained data on 101 phenotypic traits, from which principal component analysis distinguished two groups: one associated with the Chinese breeds and one with Yorkshire. The numbers of differentially expressed genes between all Chinese breeds and Yorkshire were shown to be 673 and 1056 in adipose and muscle tissues, respectively. Functional enrichment analysis revealed that these genes are associated with biological functions and canonical pathways related to oxidoreductase activity, immune response, and metabolic process. Weighted gene coexpression network analysis found more coexpression modules significantly correlated with the measured phenotypic traits in adipose than in muscle, indicating that adipose regulates meat and carcass quality. Using the combination of differential expression, QTL information, gene significance, and module hub genes, we identified a large number of candidate genes potentially related to economically important traits in pig, which should help us improve meat production and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.