Distributed quantum information processing is essential for building quantum networks and enabling more extensive quantum computations. In this regime, several spatially separated parties share a multipartite quantum system, and the most natural set of operations is Local Operations and Classical Communication (LOCC). As a pivotal part in quantum information theory and practice, LOCC has led to many vital protocols such as quantum teleportation. However, designing practical LOCC protocols is challenging due to LOCC’s intractable structure and limitations set by near-term quantum devices. Here we introduce LOCCNet, a machine learning framework facilitating protocol design and optimization for distributed quantum information processing tasks. As applications, we explore various quantum information tasks such as entanglement distillation, quantum state discrimination, and quantum channel simulation. We discover protocols with evident improvements, in particular, for entanglement distillation with quantum states of interest in quantum information. Our approach opens up new opportunities for exploring entanglement and its applications with machine learning, which will potentially sharpen our understanding of the power and limitations of LOCC. An implementation of LOCCNet is available in Paddle Quantum, a quantum machine learning Python package based on PaddlePaddle deep learning platform.
Estimating the difference between quantum data is crucial in quantum computing. However, as typical characterizations of quantum data similarity, the trace distance and quantum fidelity are believed to be exponentiallyhard to evaluate in general. In this work, we introduce hybrid quantum-classical algorithms for these two distance measures on near-term quantum devices where no assumption of input state is required. First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm. We in particular provide the technique to extract the desired spectrum information of any Hermitian matrix by local measurement. A novel variational algorithm for trace distance estimation is then derived from this technique, with the assistance of a single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth circuits due to a local cost function. Second, we introduce the Variational Fidelity Estimation (VFE) algorithm. We combine Uhlmann’s theorem and the freedom in purification to translate the estimation task into an optimization problem over a unitary on an ancillary system with fixed purified inputs. We then provide a purification subroutine to complete the translation. Both algorithms are verified by numerical simulations and experimental implementations, exhibiting high accuracy for randomly generated mixed states.
Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the current noisy intermediate-scale quantum (NISQ) era. This paper combines hybrid quantum-classical computation and quasi-probability decomposition to propose two variational quantum algorithms, called variational entanglement detection (VED) and variational logarithmic negativity estimation (VLNE), for detecting and quantifying entanglement on near-term quantum devices, respectively. VED makes use of the positive map criterion and works as follows. Firstly, it decomposes a positive map into a combination of quantum operations implementable on near-term quantum devices. It then variationally estimates the minimal eigenvalue of the final state, obtained by executing these implementable operations on the target state and averaging the output states. Deterministic and probabilistic methods are proposed to compute the average. At last, it asserts that the target state is entangled if the optimized minimal eigenvalue is negative. VLNE builds upon a linear decomposition of the transpose map into Pauli terms and the recently proposed trace distance estimation algorithm. It variationally estimates the well-known logarithmic negativity entanglement measure and could be applied to quantify entanglement on near-term quantum devices. Experimental and numerical results on the Bell state, isotropic states, and Breuer states show the validity of the proposed entanglement detection and quantification methods.
The spectral resolution of broadband Fourier-transform coherent anti-Stokes Raman spectroscopy is limited by the maximum optical path length difference that can be scanned within a short time in an interferometer. However, alternatives to the Fourier-transform exist which can bypass this limitation with certain assumptions. We apply one such approach to broadband coherent Raman spectroscopy using interferometers with short delay line (low Fourier spectral resolution) and large delay line (high Fourier spectral resolution). With this method, we demonstrate broadband coherent Raman spectroscopy of closely spaced vibrational bands is possible using a short delay line interferometer, with superior spectral resolution to the longer delay line instrument. We discuss how this approach may be particularly useful for more complex Raman spectra, such as those measured from biological samples.
An emerging direction of quantum computing is to establish meaningful quantum applications in various fields of artificial intelligence, including natural language processing (NLP). Although some efforts based on syntactic analysis have opened the door to research in Quantum NLP (QNLP), limitations such as heavy syntactic preprocessing and syntax-dependent network architecture make them impracticable on larger and real-world data sets. In this paper, we propose a new simple network architecture, called the quantum self-attention neural network (QSANN), which can make up for these limitations. Specifically, we introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention. As a result, QSANN is effective and scalable on larger data sets and has the desirable property of being implementable on near-term quantum devices. In particular, our QSANN outperforms the best existing QNLP model based on syntactic analysis as well as a simple classical self-attention neural network in numerical experiments of text classification tasks on public data sets. We further show that our method exhibits robustness to low-level quantum noises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.