Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, and mainly originates from an accumulation of abnormal B cells caused by the dysregulation of cell proliferation and apoptosis rates. The aberration of apoptosis-related genes in CLL cells results in defective apoptosis of CLL cells in response to traditional therapeutic medicine. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), a natural compound from Plumbago zeylinica, has been shown to exhibit pro-apoptotic activities in tumor cells. In the present study, we report that plumbagin effectively inhibited CLL cell viability with a lower dose compared to fludarabine, and inhibited cell proliferation in a dose-dependent manner. In addition, plumbagin promoted accumulation of MEC-1 cells in the S phase, and blocked cell cycle transition of HG3 cells from G0/G1 to S phase. Molecularly, plumbagin markedly induced CLL cell apoptosis through reduction of Bcl-2, but through an increase in the Bax protein level. These results suggest that plumbagin may be considered as a potential anticancer agent for CLL therapy.
Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, and mainly originates from an accumulation of abnormal B cells caused by the dysregulation of cell proliferation and apoptosis. The aberration of proliferation-related gene in CLL cells induces cell arrest at G0/G1 phase, or a small section shows rapid cell growth, which further complicates the pathogenesis of CLL. The constitutively photomorphogenic 1 (COP1), as an E3 ubiquitin ligase, is involved in many biological processes in mammalian cells, but its role in chronic lymphocytic leukemia (CLL) progression remains unclear. In the present study, we analyzed the expression of COP1 in peripheral blood mononuclear cells (PBMCs) from 23 CLL patients and 3 healthy donors. The observed upregulated expression of COP1 in CLL patients was positively correlated with CLL clinical stage and ZAP-70 expression, but not del(13q14) and del(17q-). Overexpression of COP1 significantly promoted cell colony formation and proliferation, especially contributing to the accumulation of cells in S-phase by inhibition of FoxO1 and p21. Moreover, overexpression of COP1 accelerated tumorigenicity of HG3 cells and promoted xenograft growth. Therefore, the present study revealed that COP1 plays an important role in CLL cell proliferation and tumorigenicity, and may be a useful indicator of the chronic lymphocytic leukemia processes.
The pathogenesis of oral lichen planus (OLP) remains unclear, and microbial dysbiosis has been proposed to play a role in the pathogenesis of OLP. Oral mucosal swabs from 77 OLP patients and 76 healthy subjects were collected. The bacterial community among the OLP lesion, the adjacent normal mucosal, and the oral mucosal surface in healthy people were analyzed by 16S sequencing. The factor of gender and age that may affect the flora distribution of OLP patients were explored. Results indicate no significant difference in microbiota between OLP and the adjacent group. Compared with the healthy group, Neisseria, Haemophilus, Fusobacterium, Porphyromonas, Rothia, Actinomyces, and Capnocytophaga significantly increased in the OLP group. Actinomyces increased in male OLP patients, and the other six bacteria increased in female OLP patients. In female OLP patients, Lautropia and Dialister were positively correlated with age. While in male OLP patients, Moraxella, Porphyromonas, and Fusobacterium were positively correlated with age. Functional enrichment analysis suggested that abnormal energy metabolism related to ATP synthases, abnormal transport and metabolism of glycans, amino acids, and vitamins, and disorders of the local immune microenvironment might exist in OLP lesion.
Background/Aims: Chronic Lymphocytic leukemia (CLL) is characterized by accumulation of cells in the G0/G1 phase of the cell cycle and resistance to apoptosis due to gene mutation or abnormal gene expression. In our previous study, constitutively photomorphogenic 1 (COP1) was shown to be upregulated in Binet C-phase CLL patients. Based on the negative regulation of COP1 in the repair of DNA damage, we further studied the function of COP1 in CLL cell apoptosis induced by fludarabine in vitro and in vivo. Methods: We analyzed the sensitivity of primary CLL cells to the fludarabine by CCK-8, and detected the expression of p53 in cells after drug treatment by western blot. Next, we constructed COP1 overexrpessing CLL cell line HG3, and analyzed the effect of COP1 overexpression on the HG3 cell’s apoptosis, and HG3 transplant mice survival with drug treatment. Results: Here, we found that primary CLL cells with high expression of COP1 showed low sensitivity to the drug and presented delayed enrichment of p53 protein than cells with low COP1 expressed. COP1 overexpression reduced HG3 cell sensitivity to the fludarabine treatment and inhibited cell apoptosis, and also retarded itself via autoubiquitination. The further study showed that COP1 promoted ubiquitin-dependent p53 degradation, which further disrupts the formation of the p53-Brn-3a complex and activation of Bcl-2 transcription. Moreover, mice engrafted with cells overexpressing COP1 showed a shortened survival, increased tumor cells burden in spleen and bone marrow (BM), and reduced tumor cell apoptosis even when fludarabine combined cyclophosphamide (F+C) therapy was administered. Conclusion: This study demonstrates that COP1 contributes to drug resistance of CLL cells to the fludarabine treatment in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.