Premise: Leaf mass (M) and lamina surface area (A) are important functional traits reported to obey a scaling relationship called "diminishing returns" (i.e., M ∝ A α>1 ). Previous studies have focused primarily on eudicots and ignored whether the age of leaves affects the numerical value of the scaling exponent (i.e., α). Methods: The effect of age was examined using 1623 Phyllostachys edulis leaves from culms differing in age collected in Nanjing, China. The scaling relationships among leaf A, fresh mass (FM), and dry mass (DM) were evaluated using reduced major axis protocols. The bootstrap percentile method was used to test the significance of differences in α-values. Results: Overall, the numerical values of α exceeded 1.0. The scaling relationship between FM and A was statistically more robust than that between DM and A. The scaling exponents of FM vs. A exhibited a "high-low-high-low-high" numerical trend from the oldest to the youngest age-group. FM increased linearly as culm age decreased; the leaf DM per unit area (LMA) exhibited a parabolic trend across the age-groups. Conclusions: "Diminishing returns" is confirmed for all but one age-group of an important monocot species. The relationship between FM and A was statistically more robust than that between DM and A for each age-group. The FM per unit A decreased with increasing age-groups, whereas the middle age-groups had a greater LMA than the oldest and youngest age-groups. These data are the first to show that the age of shoots affects the scaling relationship between leaf mass and area.
Egg geometry can be described using Preston's equation, which has seldom been used to calculate egg volume (V) and surface area (S) to explore S versus V scaling relationships. Herein, we provide an explicit re‐expression of Preston's equation (designated as EPE) to calculate V and S, assuming that an egg is a solid of revolution. The side (longitudinal) profiles of 2221 eggs of six avian species were digitized, and the EPE was used to describe each egg profile. The volumes of 486 eggs from two avian species predicted by the EPE were compared with those obtained using water displacement in graduated cylinders. There was no significant difference in V using the two methods, which verified the utility of the EPE and the hypothesis that eggs are solids of revolution. The data also indicated that V is proportional to the product of egg length (L) and maximum width (W) squared. A 2/3‐power scaling relationship between S and V for each species was observed, that is, S is proportional to (LW2)2/3. These results can be extended to describe the shapes of the eggs of other species to study the evolution of avian (and perhaps reptilian) eggs.
“Diminishing returns” in leaf economics occurs when increases in lamina mass (M), which can either be represented by lamina dry mass (DM) or fresh mass (FM), fail to produce proportional increases in leaf surface area (A), such that the scaling exponent (α) for the M vs. A scaling relationship exceeds unity (i.e., α > 1.0). Prior studies have shown that FM vs. A is better than DM vs A in assessing diminishing returns in evergreen species. However, the superiority of FM vs. A over DM vs. A has been less well examined for deciduous species. Here, we applied reduced major axis protocols to test whether FM vs. A is better than DM vs. A to describe the M vs. A scaling relationship, using a total of 4271 leaves from ten deciduous and two evergreen tree species in the Fagaceae and Ulmaceae for comparison. The significance of the difference between the scaling exponents of FM vs. A and DM vs. A was tested using the bootstrap percentile method. Further, we tested the non-linearity of the FM (DM) vs. A data on a log-log scale using ordinary least squares. We found that (i) the majority of scaling exponents of FM vs. A and DM vs. A were >1 thereby confirming diminishing returns for all 12 species, (ii) FM vs. A was more robust than DM vs. A to identify the M vs. A scaling relationship, (iii) the non-linearity of the allometric model was significant for both DM vs. A and FM vs. A., and (iv) the evergreen species of Fagaceae had significantly higher DM and FM per unit area than other deciduous species. In summary, FM vs. A is a more reliable measure than DM vs. A when dealing with diminishing returns, and deciduous species tend to invest less biomass in unit leaf light harvesting area than evergreen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.