Endometrial carcinoma (EnCa) is one of the deadliest gynecological malignancies. The purpose of the current study was to develop an immune-related lncRNA prognostic signature for EnCa. In the current research, a series of systematic bioinformatics analyses were conducted to develop a novel immune-related lncRNA prognostic signature to predict disease-free survival (DFS) and response to immunotherapy and chemotherapy in EnCa. Based on the newly developed signature, immune status and mutational loading between high-and low-risk groups were also compared. A novel 13-lncRNA signature associated with DFS of EnCa patients was ultimately developed using systematic bioinformatics analyses. The prognostic signature allowed us to distinguish samples with different risks with relatively high accuracy. In addition, univariate and multivariate Cox regression analyses confirmed that the signature was an independent factor for predicting DFS in EnCa. Moreover, a predictive nomogram combined with the risk signature and clinical stage was constructed to accurately predict 1-, 2-, 3-, and 5-year DFS of EnCa patients. Additionally, EnCa patients with different levels of risk had markedly different immune statuses and mutational loadings. Our findings indicate that the immune-related 13-lncRNA signature is a promising classifier for prognosis and response to immunotherapy and chemotherapy for EnCa.
Au-Fe3O4 hybrid hollow spheres have been successfully synthesized by a one-pot process via the hydrothermal treatment of FeCl3, HAuCl4, citrate, urea, and polyacrylamide (PAM). The amount of Au nanoparticles located in the hybrid hollow spheres can be tuned by changing the molar ratio of Au/Fe precursors. A possible synthetic mechanism of the Au-Fe3O4 hybrid hollow spheres has been proposed. The obtained hybrids exhibit not only a superior surface-enhanced Raman scattering (SERS) sensitivity, but also an excellent catalytic activity. The detection limit of the Au-Fe3O4 hybrid hollow spheres (the Au/Fe molar ratio is 0.2, Au-Fe3O4-0.2) for R6G can reach up to 10(-10) M, which can meet the required concentration level for ultratrace detection of analytes using SERS. Furthermore, the catalytic experiments of the Au-Fe3O4-0.2 hybrid hollow spheres demonstrate that the model of 4-nitrophenol (4-NP) molecules can be degraded within 3 min and the catalytic activity can be recovered without sharp activity loss in six runs, which indicates their superior catalytic degradation activity. The reason may be due to the highly efficient partial charge transfer between Au and Fe3O4 at the nanoscale interface. The results indicate that the bifunctional Au-Fe3O4 hybrid hollow spheres can serve as promising materials in trace detection and industrial waste water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.