Automatic vertebrae localization and identification in medical computed tomography (CT) scans is of great value for computer-aided spine diseases diagnosis. In order to overcome the disadvantages of the approaches employing hand-crafted, low-level features and based on field-of-view priori assumption of spine structure, an automatic method is proposed to localize and identify vertebrae by combining deep stacked sparse autoencoder (SSAE) contextual features and structured regression forest (SRF). The method employs SSAE to learn image deep contextual features instead of hand-crafted ones by building larger-range input samples to improve their contextual discrimination ability. In the localization and identification stage, it incorporates the SRF model to achieve whole spine localization, then screens those vertebrae within the image, thus relieves the assumption that the part of spine in the field of image is visible. In the end, the output distribution of SRF and spine CT scans properties are assembled to develop a two-stage progressive refining strategy, where the mean-shift kernel density estimation and Otsu method instead of Markov random field (MRF) are adopted to reduce model complexity and refine vertebrae localization results. Extensive evaluation was performed on a challenging data set of 98 spine CT scans. Compared with the hidden Markov model and the method based on convolutional neural network (CNN), the proposed approach could effectively and automatically locate and identify spinal targets in CT scans, and achieve higher localization accuracy, low model complexity, and no need for any assumptions about visual field in CT scans.
Petrochemical equipment tracking is a fundamental and important technology in petrochemical industry security monitoring, equipment working risk analysis, and other applications. In complex scenes where the multiple pipelines present different directions and many kinds of equipment have huge scale and shape variation in seriously mutual occlusions captured by moving cameras, the accuracy and speed of petrochemical equipment tracking would be limited because of the false and missed tracking of equipment with extreme sizes and severe occlusion, due to image quality, equipment scale, light, and other factors. In this paper, a new multiple petrochemical equipment tracking method is proposed by combining an improved Yolov7 network with attention mechanism and small target perceive layer and a hybrid matching that incorporates deep feature and traditional texture and location feature. The model incorporates the advantages of channel and spatial attention module into the improved Yolov7 detector and Siamese neural network for similarity matching. The proposed model is validated on the self-built petrochemical equipment video data set and the experimental results show it achieves a competitive performance in comparison with the related state-of-the-art tracking algorithms.
Petrochemical equipment detection technology plays important role in petrochemical industry security monitoring systems, equipment working status analysis systems, and other applications. In complex scenes, the accuracy and speed of petrochemical equipment detection would be limited because of the missing and false detection of equipment with extreme sizes, due to image quality, equipment scale, light, and other factors. In this paper, a one-stage attention mechanism-enhanced Yolov5 network is proposed to detect typical types of petrochemical equipment in industry scene images. The model considers the advantages of the channel and spatial attention mechanism and incorporates it into the three mainframes. Furthermore, the multiscale deep feature is fused with a bottom-up feature pyramid structure to learn the features of equipment with extreme sizes. Moreover, an adaptive anchor generation algorithm is proposed to handle objects with extreme sizes in a complex background. In addition, the data augmentation strategy is also introduced to handle the relatively small and extremely large sample and to enhance the robustness of the fused model. The proposed model was validated on the self-built petrochemical equipment image data set, and the experimental results show that it achieves a competitive performance in comparison with the related state-of-the-art detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.